Skip to main content
Log in

Experimental research and statistical analysis on the dielectric properties of lunar soil simulators

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

To support the microwave brightness data retrieval of future China space-borne lunar exploration microwave radiometer, based on the collection of plentiful terrestrial basalts and anorthosites and their chemical compositions got by X-ray fluorescence, nine lunar soil simulators were prepared and made respectively into 0.8, 1.0, 1.2, 1.4 and 1.6 g/cm3 five densities each. We measured their relative dielectric constants over the range of 0.5-20 GHz with open-ended coaxial line model on the HP8722C Network Analyzer and then processed and analyzed the measurement data. This study shows that among the three parameters of density, frequency and composition, density has the strongest effect on the relative dielectric constants, frequency comes second, composition the least. The three parameters account for 45%, 33% and 22% respectively of the changed real part of a relative dielectric constant, and 55%, 27% and 19% respectively of the changed imaginary part. The real parts of the relative dielectric constants are linearly linearly correlated with density or frequency, and the imaginary parts have a linear relation with both approximately over the range of 0.5-10 GHz and tend to be poorly correlated with them in 10–20 GHz. The effect of composition on a relative dielectric constant seems very complicated, both probably do not follow a simple function relation, with the least correlation. Multiple regression analysis indicates that major element oxides SiO2, A12O3, CaO, MgO, TiO2 and ΔFe are correspondent to a one-order polynomial, and TiO2 or ΔFe or TiO2+ΔFe has not been proven to be the indicators in the contribution to the relative dielectric constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayley, P. L., Dielectric losses in rock salt, Phys. Rev., 1933, 43(2): 355–357.

    Article  CAS  Google Scholar 

  2. Berg, G. A., Dielectric separation of mineral grains, J. Sed. Petrol., 1936, 6: 23–27.

    CAS  Google Scholar 

  3. Campbell, M. J., Ulrichs, J., Electrical properties of rocks and their significance for lunar radar observations, J. Geophys. Res., 1969, 74(25): 5867–5881.

    Article  Google Scholar 

  4. Bassett, H. L., Shackelford, R. G., Dielectric properties of Apollo 14 lunar samples at microwave and millimeter wavelengths, Geochim. Cosmochim. Acta, 1972, (supp.): 3.

  5. Chung, D. H., Westphal, W. B., Simmmons, G., Dielectric properties of Apollo 11 lunar samples and their comparison with earth materials, J. G. R., 1970, 75: 6524–6531.

    Article  CAS  Google Scholar 

  6. Chung, D. H., Westphal, W. B., Simmons, G., Dielectric behavior of lunar samples: Electromagnetic probing of the lunar interior, Geochim. Cosmochim. Acta, 1971, (supp. 2): 2381–2390.

  7. Chung, D. H., Westphal, W. B., Olhoeft, G. R., Dielectric properties of Apollo 14 lunar samples, Geochim. Cosmochim. Acta, 1972, (supp. 3): 3161–3172.

  8. Gold, T., O’Leary, B. T., Campbell, M., Some physical properties of Apollo 12 lunar samples, Geochim. Cosmochim. Acta, 1971, (supp. 2): 2173–2181.

  9. Hansen, W., Still, W. R., Ward, S. H., The dielectric properties of selected basalts, Geophysics, 1973, 38: 135–139.

  10. Olhoeft, G. R., Strangway, D. W., Dielectric properties of the first 100 meters of the moon, Earth Planet. Sci. Lett., 1975, 24: 394–404.

    Article  CAS  Google Scholar 

  11. Strangway, D. W., Moon: Electrical properties of the uppermost layers, Science, 1969, 16: 275.

    Google Scholar 

  12. Strangway, D. W., Chapman, W B., Olhoeft, G. R., Carnes, J., Electrical properties of lunar soil dependence on frequency, temperature and moisture, Earth Planet. Sci. Lett., 1972, 16: 275–281.

    Article  CAS  Google Scholar 

  13. Ulaby, F. T., Bengal, T. H., Dobson, M. C., East, J. R., Garvin, J. B., Evans, D. L., Microwave dielectric properties of dry rocks, IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 325–336.

    Article  Google Scholar 

  14. Heiken, G. H., Vaniman, D. T., French, B. M., Lunar Sourcebook: A User’s Guide to the Moon, New York, Port Chester, Melbourne, Sydney: Cambodge University Press, 1991, 536–552.

    Google Scholar 

  15. Alvarez, R., Lunar powder simulator under lunarlike conditions: Dielectric properties, J. Geophys. Res., 1973, 78(29): 6833–6844.

    Article  Google Scholar 

  16. McKay, D. S., Carter, J. L., Boles, W W., Allen C. C., Allton, J. H., JSC-1: A new lunar soil simulant, Engineering, Construction, and Operations in Space IV, American Society of Civil Engineers, 1994, 857–866.

  17. Duke, M. B., Woo, C. C., Bird, M. L., Sellers, G. A., Finkelman, R. B., Lunar soil: Size distribution and mineralogical constituents, Science, 1970, 167: 648–650.

    Article  PubMed  CAS  Google Scholar 

  18. Kulcinski, G. L., Extraction of Solar Wind Volatiles, http://fti.neep. wisc.edu/neep602/lecture 18.html, 1996.

  19. Ni Erhu, Dielectric Spectrum Technology in Materials Science (in Chinese), Beijing: Science Press, 1999, 26–31.

    Google Scholar 

  20. Stuchly, M. A., Brady, M. M., Stuchly, S. S., Gajda Gregory, Equivalent circuit of an open-ended coaxial line in a lossy dielectric, IEEE Transactions on Instrumentation and Measurement, 1982, IM-31(2): 116–119.

    Google Scholar 

  21. Zhou Qingyi, Microwave Measurement Technology (in Chinese), Beijing: National Defense Industry Press, 1964, 286–307.

    Google Scholar 

  22. Teng Xuyan, Xiao Jinkai, Shi Changging, Lai Zhaosheng, Peng Hongxian, Yang Bolin, Passive microwave radiometry in the Gobi-Desert region, Remote Sensing of Environment, 1984, 15(1): 37–46.

    Google Scholar 

  23. Xiao Jinkai, Dielectric property research of minerals and rocks and its significance on remote sensing, Environmental Remote Sensing (in Chinese), 1988, 3(2): 135–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dihui.

About this article

Cite this article

Dihui, L., Jingshan, J., Ji, W. et al. Experimental research and statistical analysis on the dielectric properties of lunar soil simulators. Chin.Sci.Bull. 50, 1034–1044 (2005). https://doi.org/10.1360/982004-816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982004-816

Keywords

Navigation