Chinese Science Bulletin

, Volume 50, Issue 11, pp 1126–1130 | Cite as

Origin and evolution of new exons in the rodent zinc finger protein 39 gene

  • Lixin Peng
  • Hongkun Zheng
  • Xin Li
  • Shuang Yang
  • Hong Chen
  • Wen WangEmail author


The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.


new exons origin and evolution zinc finger protein nuclear localization signal peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, X., Yang, S., Peng, L. X. et al., Origin and evolution of new genes, Chinese Science Bulletin, 2004, 49(16): 1219–1225.Google Scholar
  2. 2.
    Long, M., Betran, E., Thornton, K. et al., The origin of new genes: Glimpses from the young and old, Nat. Rev. Genet., 2003, 4(11): 865–875.PubMedCrossRefGoogle Scholar
  3. 3.
    Nekrutenko, A., Li, W. H., Assessment of compositional heterogeneity within and between eukaryotic genomes, Genome Res., 2000, 10(12): 1986–1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Rogalla, P., Kazmierczak, B., Flohr, A. M. et al., Back to the roots of a new exon—the molecular archaeology of a SP100 splice variant, Genomics, 2000, 63(1): 117–122.PubMedCrossRefGoogle Scholar
  5. 5.
    Letunic, I., Copley, R. R., Bork, P., Common exon duplication in animals and its role in alternative splicing, Hum. Mol. Genet., 2002, 11(13): 1561–1567.PubMedCrossRefGoogle Scholar
  6. 6.
    Ast, G., How did alternative splicing evolve? Nat. Rev. Genet., 2004, 5(10): 773–782.PubMedCrossRefGoogle Scholar
  7. 7.
    Makalowski, W., Mitchell, G. A., Labuda, D., Alu sequences in the coding regions of mRNA: A source of protein variability, Trends Genet, 1994, 10(6): 188–193.PubMedCrossRefGoogle Scholar
  8. 8.
    Kondrashov, F. A., Koonin, E. V., Evolution of alternative splicing: Deletions, insertions and origin of functional parts of proteins from intron sequences, Trends Genet, 2003, 19(3): 115–119.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, W., Brunet, F. G., Nevo, E. et al., Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 2002, 99(7): 4448–4453.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, W., Yu, H., Long, M., Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species, Nat. Genet, 2004, 36(5): 523–527.PubMedCrossRefGoogle Scholar
  11. 11.
    Looman, C., Abrink, M., Mark, C. et al., KRAB zinc finger proteins: An analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution, Mol. Biol. Evol., 2002, 19(12): 2118–2130.PubMedGoogle Scholar
  12. 12.
    Shannon, M., Hamilton, A. T., Gordon, L. et al., Differential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters, Genome Res., 2003, 13(6A): 1097–1110.PubMedCrossRefGoogle Scholar
  13. 13.
    Urrutia, R., KRAB-containing zinc-finger repressor proteins, Genome Biol., 2003, 4(10): 231.PubMedCrossRefGoogle Scholar
  14. 14.
    Jordan, I. K., Wolf, Y. I., Koonin, E. V., No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly, BMC Evol. Biol., 2003, 3: 1.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumar, S., Tamura, K., Nei, M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform., 2004, 5(2): 150–163.PubMedCrossRefGoogle Scholar
  16. 16.
    Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. et al., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, 19: 2496–2497.PubMedCrossRefGoogle Scholar
  17. 17.
    Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, 123(3): 585–95.PubMedGoogle Scholar
  18. 18.
    Fu, Y. X., Li, W. H., Statistical tests of neutrality of mutations, Genetics, 1993, 133(3): 693–709.PubMedGoogle Scholar
  19. 19.
    Zhou, Q., Wang, W., Detecting natural selection at the DNA level, Zoological Research, 2004, 25(1): 73–80.Google Scholar
  20. 20.
    O’Brien, S. J., Eizirik, E., Murphy, W. J., Genomics. On choosing mammalian genomes for sequencing, Science, 2001, 292(5525): 2264–2266.PubMedCrossRefGoogle Scholar
  21. 21.
    Springer, M. S., Murphy, W. J., Eizirik, E. et al., Placental mammal diversification and the Cretaceous-Tertiary boundary, Proc. Natl. Acad. Sci. USA, 2003, 100(3): 1056–1061.PubMedCrossRefGoogle Scholar
  22. 22.
    Cokol, M., Nair, R., Rost, B., Finding nuclear localization signals, EMBO Rep., 2000, 1(5): 411–415.PubMedCrossRefGoogle Scholar
  23. 23.
    Dingwall, C., Laskey, R. A., Protein import into the cell nucleus, Annu. Rev. Cell Biol., 1986, 2: 367–390.PubMedCrossRefGoogle Scholar
  24. 24.
    Fontes, M. R., The, T., Toth, G. et al., Role of flanking sequences and phosphorylation in the recognition of the simian-virus-40 large T-antigen nuclear localization sequences by importin-alpha, Biochem. J., 2003, 375: 339–349.PubMedCrossRefGoogle Scholar
  25. 25.
    Moede, T., Leibiger, B., Pour, H. G. et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1, FEBS Lett, 1999, 461(3): 229–234.PubMedCrossRefGoogle Scholar
  26. 26.
    Boulikas, T., Nuclear localization signals (NLS), Crit Rev. Eukaryot. Gene Expr., 1993, 3(3): 193–227.PubMedGoogle Scholar
  27. 27.
    Pandya, K., Townes, T. M., Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1, J. Biol. Chem., 2002, 277(18): 16304–16312.PubMedCrossRefGoogle Scholar
  28. 28.
    Shomron, N., Reznik, M., Ast, G., Splicing factor hSlu7 contains a unique functional domain required to retain the protein within the nucleus, Mol. Biol. Cell., 2004, 15(8): 3782–3795.PubMedCrossRefGoogle Scholar
  29. 29.
    Somasekaram, A., Jarmuz, A., How, A. et al., Intracellular localization of human cytidine deaminase. Identification of a functional nuclear localization signal, J. Biol. Chem., 1999, 274(40): 28405–28412.PubMedCrossRefGoogle Scholar
  30. 30.
    Dingwall, C., Dilworth, S. M., Black, S. J. et al., Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals, EMBO J., 1987, 6(1): 69–74.PubMedGoogle Scholar
  31. 31.
    Efthymiadis, A., Shao, H., Hubner, S. et al., Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS, J. Biol. Chem., 1997, 272(35): 22134–22139.PubMedCrossRefGoogle Scholar
  32. 32.
    Fahrenkrog, B., Aebi, U., The nuclear pore complex: Nucleocytoplasmic transport and beyond, Nat. Rev. Mol. Cell Biol., 2003, 4(10): 757–766.PubMedGoogle Scholar
  33. 33.
    Sauer, F., Fondell, J. D., Ohkuma, Y. et al., Control of transcription by Kruppel through interactions with TFIIB and TFIIE beta, Nature, 1995a, 375(6527): 162–164.PubMedCrossRefGoogle Scholar
  34. 34.
    Sauer, F., Jackie, H., Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors, EMBO J., 1995b, 14(19): 4773–4780.PubMedGoogle Scholar
  35. 35.
    Noce, T., Fujiwara, Y., Sezaki, M. et al., Expression of a mouse zinc finger protein gene in both permatocytes and oocytes during meiosis, Dev. Biol., 1993, 153(2): 356–367.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Lixin Peng
    • 1
    • 2
  • Hongkun Zheng
    • 3
  • Xin Li
    • 1
    • 2
  • Shuang Yang
    • 2
    • 4
  • Hong Chen
    • 1
    • 5
  • Wen Wang
    • 2
    Email author
  1. 1.College of Animal Science and TechnologyNorthwest Sci-Tech University of Agriculture and ForestryYanglingChina
  2. 2.CAS-Max Planck Junior Scientist Group, Key Laboratory of Cellular and Molecular EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
  3. 3.Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  4. 4.Graduate School of the Chinese Academy of SciencesBeijingChina
  5. 5.Institute of Cellular and Molecular BiologyXuzhou Normal UniversityXuzhouChina

Personalised recommendations