Advertisement

Chinese Science Bulletin

, Volume 50, Issue 10, pp 945–949 | Cite as

Surface tension and specific heat of liquid Ni70.2Si29.8 alloy

  • Wang HaipengEmail author
  • Wei Bingbo
Articles

Abstract

The surface tension and specific heat of stable and metastable liquid Ni70.2Si29.8 eutectic alloy were measured by electromagnetic levitation oscillating drop method and drop calorimetry. The surface tension depends on temperature linearly within the experimental undercooling regime of 0–182 K (0.12 TE). Its value is 1.693 N-m−1 at the eutectic temperature of 1488 K, and the temperature coefficient is-4.23×10−4 N-m−1.K−1. For the specific heat measurement, the maximum undercooling is up to 253 K (0.17 TE). The specific heat is determined as a polynomial function of temperature in the experimental temperature regime. On the basis of the measured data of surface tension and specific heat, the temperature-dependent density, excess volume and sound speed of liquid Ni70.2Si29.8 alloy are predicted theoretically.

Keywords

surface tension specific heat high undercooling electromagnetic levitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fecht, H. J., Fu, Z., Johnson, W. L., Specific-heat anomaly during vitrification of hydrided Fe2Er single crystals, Phys. Rev. Lett., 1990, 64(15): 1753–1756.PubMedCrossRefGoogle Scholar
  2. 2.
    Sung, Y. S., Takeya, H., Hirata, K. et al., Specific heat capacity and hemispherical total emissivity of liquid Si measured in electrostatic levitation, Appl. Phys. Lett., 2003, 83(6): 1122–1124.CrossRefGoogle Scholar
  3. 3.
    Przyborowski, M., Hibiya, T., Egry, I. et al., Surface tension measurement of molten silicon by the oscillating drop method using electromagnetic levitation, J. Cryst. Growth, 1995, 151: 60–65.CrossRefGoogle Scholar
  4. 4.
    Wang, H. P., Yao, W. J., Wei, B., Surface tension of superheated and undercooled liquid Co-Si alloy, Appl. Phys. Lett., 2004, 85(16): 3414–3416.CrossRefGoogle Scholar
  5. 5.
    Won-Kyu Rhim, Kenichi Ohsaka, Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: Density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity, J. Cryst. Growth, 2000(1), 208: 313–321.CrossRefGoogle Scholar
  6. 6.
    Wang, H. P., Cao, C. D., Wei, B., Rapid monotectic solidification during free fall in a drop tube, Chinese Science Bulletin, 2004, 49(3): 220–224.CrossRefGoogle Scholar
  7. 7.
    Fecht, H. J., Perepezko, J. H., Lee, M. C. et al., Thermodynamic properties and crystallization kinetics of glass-forming undercooled liquid Au-Pb-Sb alloys, J. Appl. Phys., 1990, 68(9): 4494–4502.CrossRefGoogle Scholar
  8. 8.
    Wang, H. P., Cao, C. D., Wei, B., Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt, Appl. Phys. Lett., 2004, 84(20): 4062–4064.CrossRefGoogle Scholar
  9. 9.
    Wang, N., Han, X. J., Wei, B., Specific heat and thermodynamic properties of undercooled liquid cobalt, Appl. Phys. Lett., 2002, 80(1): 28–30.CrossRefGoogle Scholar
  10. 10.
    Wang, N., Wei, B., Thermodynamic properties of highly undercooled liquid TiAl alloy, Appl. Phys. Lett., 2002, 80(19): 3515–3517.CrossRefGoogle Scholar
  11. 11.
    Han, X. J., Wei, B., Thermophysical properties of undercooled liquid cobalt, Philos. Mag. Lett., 2002, 82(2): 451–459.CrossRefGoogle Scholar
  12. 12.
    Rayleigh, L., On the capillary phenomena of jets, Proc. R. Soc. Lond., 1879, 29: 71–97.CrossRefGoogle Scholar
  13. 13.
    Cummings, D. L., Blackburn, D. A., Oscillations of magnetically levitated asphencal droplets, J. Fluid Mech., 1991, 224(3): 395–416.CrossRefGoogle Scholar
  14. 14.
    Eötvös, R., Wieldeman, S., Über den Zusammenhang der Oberflachenspannung mit dem molekularvolumen, Ann. Phys. Chem., 1886, 27: 448–459.CrossRefGoogle Scholar
  15. 15.
    Campbell, J., Smithells’ Metals Reference Book, 6th ed., 1983.Google Scholar
  16. 16.
    Brillo, J., Egry, I., Density determination of liquid copper, nickel, and their alloys, Inter. J. Thermophys., 2003, 24(4): 1155–1170.CrossRefGoogle Scholar
  17. 17.
    Schaefers, K., Rosner-Kuhn, M., Frohberg, M. G., Enthalpy measurements of undercooled melts by levitation calorimetry: The pure metals nickel, iron, vanadium and niobium, Mater. Sci. Eng. A, 1995, 197(1): 83–90.CrossRefGoogle Scholar
  18. 18.
    Iida, T., Guthrie, R. I. L., The Physical Properties of Liquid Metals, Oxford: Clarendon Press, 1993, 93.Google Scholar
  19. 19.
    Lipton, J., Kurz, W., Trivedi, R., Rapid dendrite growth in undercooled alloys, Acta Metall., 1987, 65(4): 957–964.Google Scholar
  20. 20.
    Trivedi, R., Lipton, J., Kurz, W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metall., 1987, 35(4): 965–970.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations