Skip to main content
Log in

Critical adsorbing properties in slits predicted by traditional polymer adsorption theories on Ising lattice

  • Articles
  • Published:
Chinese Science Bulletin

Abstracts

The critical adsorbing properties in slits and three-dimension (3D) phase transitions can be predicted by either Freed theory or Flory-Huggins theory. The mean field approximation in Flory-Huggins theory may cause apparent system errors, from which one can observe two-dimension (2D) phase transitions although it is not true. Monte Carlo simulation has demonstrated that Freed theory is more suitable for predicting adsorbing properties of fluids in slits than Flory-Huggins theory. It was found that from Freed theory prediction multilevel adsorption occurs in slits and the spreading pressure curves exhibit binodal points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talingting, M. R., Ma, Y. H., Simmons, C. et al., Adsorption of cationic polymer micelles on polyelectrolyte-modified surfaces, Langmuir, 2000, 16: 862–865.

    Article  Google Scholar 

  2. Inglis, W., Sanders. G. H. W., Williams, P. M. et al., A simple method for biocompatible polymer based spatially controlled adsorption of blood plasma proteins to a surface, Langmuir, 2001, 17: 7402–7405.

    Article  Google Scholar 

  3. Coupe, B., Evangelista, M. E., Yeung, R. M. et al., Surface modification of poly (tetrafluorethylene-co-hexafluoropropylene) by adsorption of functional polymers, Langmuir, 2001, 17: 1956–1960.

    Article  Google Scholar 

  4. Mayer, J. E., Mayer, M. G., Statistical Mechanics, New York: Wiley, 1940.

    Google Scholar 

  5. Flory, P. J., Thermodynamics of high polymer solutions, J. Chem. Phys., 1942, 10:51–61.

    Article  Google Scholar 

  6. Huggins, M. L., Some properties of solutions of long-chain compounds, J. Phys. Chem., 1942, 46: 151–158.

    Article  Google Scholar 

  7. Freed, K. F., Bawendi, M. G., Lattice theory of polymeric fluids, J. Phys. Chem., 1989, 93: 2194–2203.

    Article  Google Scholar 

  8. Freed, K. F., New Lattice model for interacting, avoiding polymers with controlled length distribution, J. Phys. A, 1985, 18: 871–887.

    Article  Google Scholar 

  9. Hu, Y., Liu, H. L., Soane, D. S. et al., Binary liquid-liquid equilibria from a double-lattice model, Fluid Phase Equilibria, 1991, 67: 65–86.

    Article  Google Scholar 

  10. Hu, Y., Lambert, S. M., Soane, D. S. et al., Double-lattice model for binary polymer solutions, Macromolecules, 1991, 24(15): 4365–4363.

    Google Scholar 

  11. Hu, Y., Ying, X. G., Wu, D. T. et al., Molecular thermodynamics of polymer solutions, Fluid Phase Equilibria, 1992, 83(1): 289–300.

    Google Scholar 

  12. Hu, Y., Ying, X. G., Wu, D. T. et al., Liquid-liquid equilibria for solutions of polydisperse polymers, Continuous thermodynamics for the close-packed lattice model, Macromolecules, 1993, 26(25): 6817–6823.

    Article  Google Scholar 

  13. Aranovich, G. L., Donohue, M. D., Phase loops in density-functional-theory calculations of adsorption in nanoscale pores, Phys. Rev., 1999, 60: 5552–5560.

    Google Scholar 

  14. Aranovich, G. L., Donohue, M. D., A simple numerical algorithm for solution of non-linear equations with multiple roots, Computers Chem., 1997, 22(5): 429–432.

    Google Scholar 

  15. Ono, S., Kondo, S., Molecular theory of surface tension in liquids, in Encyclopedia of Physics (ed. Flugge, S.), Berlin: Springer-Verlag, 1960.

    Google Scholar 

  16. Aranovich, G. L., Donohue, M. D., Analysis of adsorption isotherms: Lattice theory predictions, classification of isotherms for gas-solid equilibria, and similarities in gas and liquid adsorption behavior, J. Colloid and Interface Sci., 1997, 200: 273–290.

    Article  Google Scholar 

  17. Aranovich, G. L., Donohue, M. D., Adsorption hysteresis in porous solids, J. Colloid and Interface Sci., 1998, 205: 121–130.

    Article  Google Scholar 

  18. Liu, M. T., Mu, B. Z., Liu, H. L. et al., Application of the revised lattice density functional theory in slits, Acta Physico-Chimica Sinica (in Chinese), 2004, 20(6): 668–672.

    Google Scholar 

  19. Yan, Q. L., Chen, P., Liu, H. L. et al., Molecular thermodynamic model for Ising lattice, J. of East China University of Science and Technology (in Chinese), 1996, 22: 608–612.

    Google Scholar 

  20. Yan, Q. L., Liu, H. L., Hu, Y., Analytical expressions of helmholtz function of mixing for Ising model, Fluid Phase Equilibria, 2004, 218: 157–161.

    Article  Google Scholar 

  21. Brunauer, S., The adsorption of Gases and Vapors, Princeton: Princeton University Press, 1945.

    Google Scholar 

  22. Sing, K. S. W., Physisorption of gases by carbon blacks, Carbon, 1994, 32: 1311–1317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhong Mu.

About this article

Cite this article

Liu, M., Mu, B. Critical adsorbing properties in slits predicted by traditional polymer adsorption theories on Ising lattice. Chin.Sci.Bull. 50, 1691–1695 (2005). https://doi.org/10.1360/982004-320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982004-320

Keywords

Navigation