Skip to main content
Log in

Direct numerical simulation of a supersonic turbulent boundary layer on a flat plate and its analysis

  • Published:
Science in China Series G: Physics and Astronomy Aims and scope Submit manuscript

Abstract

Temporal mode direct numerical simulation (DNS) has been done for a supersonic turbulent boundary layer on a flat plate with Mach number 4.5. It was found that the mean flow profile, the normal-wise distribution of turbulent Mach number and the root mean square (RMS) of the fluctuations of various variables, as well as the Reynolds stresses, bore similarity in nature, when the turbulence reached a fully developed state. But the compressibility effect was strong and must be considered. The strong Reynolds analogy (SRA) and the Morkovin hypothesis were no longer valid. From the end of transition to the fully developed state of turbulence, it was in the transient period, for which the similarity did not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guarini, S. E., Moser, R. D., Shariff, K. et al., Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5, J. Fluid Mech., 2000, 414: 1–33.

    Article  MATH  ADS  Google Scholar 

  2. Maeder, T., Adams, N. A., Kleiser, L., Direct simulation of turbulent supersonic boundary layers by an extended temporal approach, J. Fluid Mech., 2001, 429: 187–216.

    Article  MATH  ADS  Google Scholar 

  3. Gatski, T. B. Erlebacher, G. Numerical simulation of a spatially evolving supersonic, turbulent boundary layer, NASA Tech. Meno., 2002–211934 (2002).

  4. Pirozzoli, S., Grasso, F., Gatski, T. B., Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25, Physics of Fluids, 2004, 16(3): 530–545.

    Article  ADS  Google Scholar 

  5. Li, X. L., Fu, D. X., Ma, Y. W., DNS of compressible turbulent boundary layer over a blunt wedge, Science in China, Ser. G 2005, 48(2): 129–141.

    Article  ADS  Google Scholar 

  6. Morkovin, M. V., Effects of compressibility on turbulent flows, Mécanique de la Turbulence (ed. Favre, A.), CNRS, Paris, 1962, 367–380.

    Google Scholar 

  7. Coleman, G. N., Kim, J., Moser, R. D., A numerical study of turbulent supersonic isothermal-wall channel flow, J. Fluid Mech., 1995, 305: 159–183.

    Article  MATH  ADS  Google Scholar 

  8. Spina, E. F., Smits, A. J., Robinson, S. K., The physics of supersonic turbulent boundary layers, Ann. Rev. Fluid Mech., 1994, 26: 287–319.

    Article  ADS  Google Scholar 

  9. Lele, S. K., Compressibility effects on turbulence, Ann. Rev. Fluid Mech., 1994, 26: 211–254.

    Article  ADS  MathSciNet  Google Scholar 

  10. Huang, Z. F., Cao, W., Zhou, H., The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode, Science in China, Ser. G, 2005, 48(5): 614–625.

    Article  Google Scholar 

  11. White, F. M., Viscous Fluid Flow, New York: McGraw-Hill, 1974.

    MATH  Google Scholar 

  12. Spalart, P. R., Direct simulation of a turbulent boundary layer up to Re π=1410, J. Fluid Mech., 1988, 187: 61–98.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Zhou, H. & Luo, J. Direct numerical simulation of a supersonic turbulent boundary layer on a flat plate and its analysis. Sci China Ser G: Phy & Ast 48, 626–640 (2005). https://doi.org/10.1360/142005-184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/142005-184

Keywords

Navigation