Skip to main content
Log in

Directional EMD and its application to texture segmentation

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

In this paper we present the definition and framework of Directional Empirical Mode Decomposition (DEMD) and use DEMD to do texture segmentation. As a new technique of time-frequency analysis, EMD decomposes signals by sifting and then analyzes the instantaneous frequency of the obtained components called Intrinsic Mode Functions (IMFs). Compared with Bidimensional EMD (BEMD) which only extracts textures by radial basis function interpolation, the virtues of DEMD include: the directional quality is considered in this framework; four features can be extracted for each point from the decomposition. The technique of selecting directions for DEMD based on texture’s Wold theory is also presented. Experimental results indicate the effectiveness of the method for texture segmentation. In addition, we show the explanation for the DEMD’s ability for texture classification from visual views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perona, P., Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(7): 629–639.

    Article  Google Scholar 

  2. Goutsias, J., Heijmans, H. J. A. M., Nonlinear multiresolution signal decomposition schemes—Part I: Morphological pyramids, IEEE Trans. Image Processing, 2000, 9(11): 1862–1876.

    Article  MathSciNet  MATH  Google Scholar 

  3. Rakshit, S., Nema, M. K., The Laplacian pyramid as a compact image code, IEEE Trans. Communications, 1983, 31(4): 532–540.

    Article  Google Scholar 

  4. Mallat, S. G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, 11(7): 674–693.

    Article  MATH  Google Scholar 

  5. Nunes, J. C., Bouaoune, Y., Delechelle, E. et al., Image analysis by dimensional empirical mode decomposition, Image and Vision Computing, 2003, 12: 1019–1026.

    Article  Google Scholar 

  6. Comer, M. L., Delp, E. J., Segmentation of textured images using a multiresolution Gaussian autoregressive model, IEEE Trans. on Image Processing, 1999, 8: 408–420.

    Article  Google Scholar 

  7. Tuceryan, M., Jain, A. K., Texture segmentaiton using Voronoi polygons, IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(2): 211–216.

    Article  Google Scholar 

  8. Chaudhuri, B. B., Sarkar, N., Texture segmentation using fractal dimension, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(1): 72–77.

    Article  Google Scholar 

  9. Jacobson, L. D., Wechsler, H., Joint spatial/spatial-frequency representation, Signal Processing, 1988, 14: 37–68.

    Article  Google Scholar 

  10. Lu, C. S., Chung, P. C., Chen, C. F., Unsupervised texture segmentation via wavelet transform, Pattern Recognition, 1997, 30(5): 729–742.

    Article  Google Scholar 

  11. Bovik, A. C., Clark, M., Geisler, W. S., Multichannel texture analysis using localized spatial filters, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(1): 55–73.

    Article  Google Scholar 

  12. Weldon, T. P., Higgins, W. E., Dunn, D. F., Efficient Gabor-filter design for texture segmentation, Pattern Recognition, 1996, 29(12): 2005–2016.

    Article  Google Scholar 

  13. Randen, T., Husoy, J. H., Multichannel filtering for image texture segmentation, Opt. Eng., 1994, 33(8): 2617–2625.

    Article  Google Scholar 

  14. Cohn, L., Time-Frequency Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1995.

    Google Scholar 

  15. Huang, N. E., Shen, Z., Long, S. R. et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 1998, 454: 903–995.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yue, H. Y., Guo, H. D., Han, C. M. et al., A SAR interferogram filter based on the empirical mode decompositin method, IEEE Int. Geoscience and Remote Sensing Symposium, Sydney, Anstralia, 2001, 5: 9–13.

    Google Scholar 

  17. Long, S. R., Use of the empirical mode decomposition and Hilbert-Huang transform in image analysis, World Multi-conference on Systemics, Cybernetics and Informatics, Cybernetics And Informatics: Concepts And Applications (Part II), 2001.

    Google Scholar 

  18. Francos, J. M., Meiri, A. Z., Porat, B., A unified texture modle based on a 2-D Wold-like decomposition, IEEE Trans. On Signal Processing, 1993, 41: 2665–2678.

    Article  MATH  Google Scholar 

  19. Liu, Z. X., Wang, H. J., Peng, S. L., Texture segmentation using directional empirical mode decomposition, IEEE ICIP’04, in IEEE Int. Cont. Image Processing, Singapo, 2004, 279–282.

  20. Bulow, Th., Sommer, G., Hypercomplex signals — A novel extension of the analytic signal to the multidimensional case, IEEE Trans. on Signal Processing, 2001, 49(11): 2844–2852.

    Article  MathSciNet  MATH  Google Scholar 

  21. Julesz, B., Textons, the elements of texture perception, and their interactions, Nature, 1981, 290(12 March): 91–97.

    Article  Google Scholar 

  22. Tomita, F., Tsuji, S., Computer Analysis of Visual Textures, Hingham, Ma: Kluwer Academic, 1990.

    Book  MATH  Google Scholar 

  23. Brodatz, P., Textures—A Photographic Album for Artists and Designers, Dover, New York: Kluwer Academic, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Peng, S. Directional EMD and its application to texture segmentation. Sci China Ser F 48, 354–365 (2005). https://doi.org/10.1360/122004-39

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/122004-39

Keywords

Navigation