Skip to main content
Log in

Rapid monotectic solidification under free fall condition

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Fe-48.8% Sn monotectic, Fe-40% Sn hypomonotectic and Fe-58% Sn hypermonotectic alloys have been rapidly solidified during free fall processing in drop tube. For droplets of 100–1000 μm, the maximum undercooling for Fe-48.8% Sn, Fe-40% Sn and Fe-58% Sn alloys is 270, 282 and 288 K respectively. For Fe-48.8% Sn monotectic alloy, a homogeneously dispersed microstructure can be obtained when the droplet diameter is small, and the Marangoni migration velocity Vm is 37 times as fast as Stokes velocity Vs when the dispersion sphere radius is 6 μm and undercooling is 30 K. For Fe-40% Sn hypomonotectic alloy, the microstructure undergoes a transition from columnar α-Fe dendrites distributed in Sn-rich matrix to α-Fe particles. The growth velocity of α-Fe dendrite changes from 0.45 to 4.65 m/s when the droplet diameter varies from 1000 to 100 μm. For Fe-58.8% Sn hypermonotectic alloy, the grain size of primary α-Fe dendrites decreases remarkably when undercooling increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, N., Wei, B., Phase separation and structural evolution of undercooled Fe−Sn monotectic alloy, Mater. Sci. Eng., 2003, A345: 145–154.

    Article  Google Scholar 

  2. Grugel, R. N., Hellawell, A., Alloy solidification in systems containing a liquid miscibility gap, Metall. Trans. A, 1981, 12A: 669–681.

    Google Scholar 

  3. Aoi, I., Yoshida, M., Fukunaga, H. et al., Influence of growth direction on the microstructure of uni direction-ally solidified Cu−Pb monotectic alloy using zone-melt technique, J. Cryst. Growth, 2001, 222: 806–815.

    Article  Google Scholar 

  4. Cao, C. D., Wang, N., Wei, B., Containerless rapid solidification of undercooled Cu−Co peritectic alloys, Science in China, Ser. A, 2000, 43: 1318–1326.

    Article  Google Scholar 

  5. Vinet, B., Potard, C., Solidification of Al-In monotectic alloy by configuration Bridgman horizontal, J. Cryst. Growth, 1983, 61: 355–361.

    Article  Google Scholar 

  6. Predel, B., Ratke, L., Fredriksson, H., A European perspective: Fluid Sciences and Materials Science in Space (ed. Walter, H. U.), New York: Springer-Verlag, 1987, 517–565.

    Google Scholar 

  7. Shan, S., Grugel, R. N., Lichter, B. D., Directional solidification of lead-copper immiscible alloys in a cyclic gravity environment, Metall. Trans. A., 1988, 19A: 2677–2680.

    Google Scholar 

  8. Gelles, S. H., Markworth, A. J., Microgravity studies in the liquid-phase immisicible system: aluminum-indium, AIAA J., 1978, 16: 431–437.

    Article  Google Scholar 

  9. Potard, C., Materials Processing in the Reduced Gravity Environment of Space, New York: Elsevier Science, 1982, 543.

    Google Scholar 

  10. Andrews, J. B., Sandlin, A. C., Curreri, P. A., Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu−Pb−Al alloys. Metall. Trans. A, 1988, 19A: 2645–2650.

    Google Scholar 

  11. Grugel, R. N., Proc. of NASA Microgravity Materials Science Conference, Huntsville: Alabama, 1998, 289.

  12. Rogers, J. R., Davis, R. H., Modeling of collision and coalescence of droplets during microgravity processing of Zn−Bi immiscible alloys, Metall. Trans. A, 1990, 21A: 59–68.

    Google Scholar 

  13. Greer, A. L., Nucleation and solidification studies using drop-tubes, Mater. Sci. Eng., 1994, A178: 113–120.

    Article  Google Scholar 

  14. Yao, W. J., Wei, B., Rapid growth of nickel dendrite in highly undercooled Ni−Mo alloys, Science in China, Ser. E, 2003, 46: 593–606.

    Article  Google Scholar 

  15. Okamoto, H., Binary Alloy Phase Diagrams (ed. Massalski, T. B.), ASM International, USA., 1990, 1774.

    Google Scholar 

  16. Wang, N., Wei, B., Rapid solidification behavior of Ag−Cu−Ge ternary eutectic alloy, Mater. Sci. Eng., 2001, A307: 80–90.

    Article  Google Scholar 

  17. Adkins, N. J. E., Tsakiropoulos, P., The Microstructure of High Pressure Gas Atomised Powders, Mater. Sci. Technol., 1991, 7: 334–340.

    Google Scholar 

  18. Lee, E., Ahn., S., Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming, Acta Metall. Mater., 1994, 42: 3231–3243.

    Article  Google Scholar 

  19. Kurz, W., Fisher, D. J., Fundamentals of Solidification, Switzerland: Trans Tech., 1998, 32.

    Google Scholar 

  20. Spaepen, F., A structural model for the solid-liquid interface in monatomic systems, Acta Metall., 1975, 23: 729–743.

    Article  Google Scholar 

  21. Busch, R., Gärtner, F., Borchers, C. et al., Microstructure development during rapid solidification of highly supersaturated Cu−Co alloys, Acta Metall., 1995, 43: 3467–3475.

    Article  Google Scholar 

  22. Marangoni, C., Study on surface tension of fluid, Ann. Phys. Chem., 1871, 143: 337–354.

    Article  Google Scholar 

  23. Ratke, L., Voorhees, P. W., Growth and Coarsening, New York: Springer-Verlag, 2002, 239.

    Google Scholar 

  24. Lipton, J., Kurz, W., Trivedi., R., Rapid dendrite growth in undercooled alloys, Acta Metall, 1987, 35: 957–964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Xiangrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Lu, X. & Wei, B. Rapid monotectic solidification under free fall condition. Sci. China Ser. E-Technol. Sci. 47, 409–420 (2004). https://doi.org/10.1360/04ye0024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04ye0024

Keywords

Navigation