Skip to main content
Log in

Immunotherapy of tumor by targeting angiogenesis

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman, J., Tumor angiogenesis: Therapeutic implications, N. Engl. J. Med., 1971, 285: 1182–1186.

    PubMed  CAS  Google Scholar 

  2. Frank, A. S., Mechanisms and future directions for angiogenesis-based cancer therapies, J. Clin. Oncol., 2002, 20: 3906–3927.

    Article  Google Scholar 

  3. Kerbel, R. S., Folkman, J., Clinical translation of angiogenesis inhibitors, Nat. Rev. Cancer, 2002, 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

  4. Zetter, B. R., Angiogenesis and tumor metastasis, Annu. Rev. Med., 1998, 49:407–424.

    Article  PubMed  CAS  Google Scholar 

  5. Boehm, T., Folkman, J., Browder, T. et al., Anti-angiogenic therapy of experimental cancer does not induce acquired drug resistance, Nature, 1997, 390:404–407.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other diseases, Nature Med., 1995, 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet, P., Jain, R. K., Angiogenesis in cancer and other diseases, Nature, 2000, 407:249–257.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, K. J., Li, B., Winer, J. et al., Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo, Nature, 1993, 362(6423): 841–844.

    Article  PubMed  CAS  Google Scholar 

  9. Koichi, T., Hikaru, U., Yoichi, N. et al., Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ, Cancer Res., 2000, 60:2169–2177.

    Google Scholar 

  10. Lin, P. L., Jake, A. B., Ann, A. et al., Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2, Proc. Natl. Acad. Sci. USA, 1998, 95: 8829–8834.

    Article  PubMed  CAS  Google Scholar 

  11. Ferrara, N., Terri, D. S., The biology of vascular endothelial growth factor, Endocr. Rev., 1997, 18: 4–25.

    Article  PubMed  CAS  Google Scholar 

  12. Marie, P., James, H., Li, Y. W. et al., Antivascular endothelial growth factor receptor (Fetal Liver Kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors, Cancer Res., 1999, 59: 5209–5218.

    Google Scholar 

  13. Niederman, T. M. J., Ghogawala, Z., Carter, B. S. et al., Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors, Proc. Natl. Acad. Sci. USA, 2002, 99(10): 7009–7014.

    Article  PubMed  CAS  Google Scholar 

  14. Hackel, P. O., Zwick, E., Prenzel, N. et al., Epidermal growth factor receptors: Critical mediators of multiple receptor pathways, Curr. Opin. CellBiol., 1999, 11: 184–189.

    Article  CAS  Google Scholar 

  15. Gleave, M. E., Hsieh, J. T., Wu, H. C. et al., Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma, Cancer Res., 1993, 53: 5300–5307.

    PubMed  CAS  Google Scholar 

  16. Takashi, K., Paul, S., Joel, W. S. et al., Inhibition of angiogenesis by the antiepidermal growth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing or-thotopically in nude mice, Clini. Cancer Res., 2002, 8: 1253–1264.

    Google Scholar 

  17. Brooks, P. C., Stromblad, S., Klemke, R. et al., Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin, J. Clin. Invest., 1995, 96(4): 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  18. Friedlander, M., Brooks, P. C., Shaffer, R. W. et al., Definition of two angiogenic pathways by distinct a v integrins, Science, 1995, 270(5241): 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  19. Brooks, P. C., Stromblad, S., Sanders, L. C. et al., Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3, Cell, 1996, 85(5): 683–693.

    Article  PubMed  CAS  Google Scholar 

  20. John, C. G., Thomas, N. C., Paul, R. P. et al., Targeted antiangiogenic therapy for cancer using Vitaxin: A humanized monoclonal antibody to the integrin αvβ3, Clin. Cancer Res., 2000, 6: 3056–3061.

    Google Scholar 

  21. Aberle, H., Schwartz, H., Kemler, R., Cadherin-catenin complex: Protein interactions and their implications for cadherin function, J. Cell Biochem., 1996, 61: 514–523.

    Article  PubMed  CAS  Google Scholar 

  22. Liao, F., Li, Y., O’Connor, W. et al., Monoclonal antibody to vascular endothelial (VE)-cadherin is a potent inhibitor of angiogenesis, tumor growth and metastasis, Cancer Res., 2000, 60: 6805–6810.

    PubMed  CAS  Google Scholar 

  23. Monica, C., Lucia, Z., Fabrizio, O. et al., A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability, Blood, 2002, 100: 905–911.

    Article  Google Scholar 

  24. Rosenberg, S. A., Progress in human tumor immunology and immunotherapy, Nature, 2001, 411: 380–384.

    Article  PubMed  CAS  Google Scholar 

  25. Karlsen, A. E., Dyrbert, T., Molecular mimicry between non-self, modified self and self in autoimmunity, Semin. Immunol., 1998, 10: 25–34.

    Article  PubMed  CAS  Google Scholar 

  26. Wei, Y. Q., Wang, Q. R., Zhao, X. et al., Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine, Nat. Med., 2000, 6: 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  27. Wei, Y. Q., Huang, M. J., Yang, L. et al., Immunogene therapy of tumors with vaccine based on xenopus homologous vascular endothelial growth factor as a model antigen, Proc. Natl. Acad. Sci. USA, 2001, 98: 11545–11550.

    Article  PubMed  CAS  Google Scholar 

  28. He, Q. M., Wei, Y. Q., Tian, L. et al., Inhibition of tumor growth with a vaccine based on xenogeneic homologous fibroblast growth factor receptor-1 in mice, J. Biol. Chem., 2003, 278(24): 21831–21836.

    Article  PubMed  CAS  Google Scholar 

  29. Lou, Y. Y., Wei, Y. Q., Yang, L. et al., Immunogene therapy of tumor with vaccine based on the ligand binding domain of chick homologous integrinβ3, Immunol. Invest., 2002, 31: 51–69.

    Article  PubMed  CAS  Google Scholar 

  30. Su, J. M., Wei, Y. Q., Tian, L. et al., Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2, Cancer Res., 2003, 63: 600–607.

    PubMed  CAS  Google Scholar 

  31. Liu, J. Y., Wei, Y. Q., Yang, L. et al., Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2, Blood, 2003, 102: 1815–1823.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, Y., Wei, Y. Q., Tian, L. et al., Immunogene therapy of tumors with vaccine based on xenogeneic epidermal growth factor receptor, J. Immunol., 2003, 70(6): 3162–3170.

    Google Scholar 

  33. Overwijk, W. W., Lee, D. S., Surman, D. R. et al., Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: Requirement for CD4(+) T lymphocytes, Proc. Natl. Acad. Sci. USA, 1999, 96: 2982–2987.

    Article  PubMed  CAS  Google Scholar 

  34. Toes, R. E. M., Ossendrop, F., Offringa, R. et al., CD4+ T cells and their role in antitumor immune responses, J. Exp. Med., 1998, 189: 753–756.

    Article  Google Scholar 

  35. Pardoll, D. M., Inducing autoimmune disease to treat cancer8, Proc. Natl. Acad. Sci. USA, 1999, 96: 5340–5342.

    Article  PubMed  CAS  Google Scholar 

  36. De Silva, H. D., Van Driel, I. R., LaGruta, N. et al., CD4+ T cells, but not CD8+ T cells, are required for the development of experimental autoimmune gastritis, Immunology, 1998, 93: 405–408.

    Article  PubMed  Google Scholar 

  37. Kumar, V., Stellrecht, K., Sercarz, E., Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE), J. Exp. Med., 1996, 184: 1609–1617.

    Article  PubMed  CAS  Google Scholar 

  38. Li, Y. W., Wang, M. N., Li, H. L. et al., Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis, J. Exp. Med., 2002, 195: 1575–1584.

    Article  PubMed  CAS  Google Scholar 

  39. Nair, S., Boczkowski, D., Moeller, B. et al., Synergy between tumor immunotherapy and anti-angiogenic therapy, Blood, 2003, 102: 964–971.

    Article  PubMed  CAS  Google Scholar 

  40. Niethammer, A. G., Xiang, R., Becker, J. C. et al., A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth, Nature Med., 2002, 8: 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  41. Martin Hagedorn, Andreas Bikfalvi, Target molecules for anti-angiogenic therapy: From basic research to clinical trials, Crit. Rev. Oncol. Hematol., 2000, 34: 89–110.

    Article  PubMed  CAS  Google Scholar 

  42. Plum, S. M., Holaday, J. W., Ruiz, A. et al., Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development, Vaccine, 2001, 19: 1294–1303.

    Article  Google Scholar 

  43. Frank, A. S., The therapeutic potential of novel antiangiogenic therapies, Expert Opin. Investig. Drugs, 2003, 6:923–932.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuquan Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, J., Tian, L. & Wei, Y. Immunotherapy of tumor by targeting angiogenesis. Sci. China Ser. C.-Life Sci. 47, 545–552 (2004). https://doi.org/10.1360/04yc0044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/04yc0044

Keywords

Navigation