Skip to main content
Log in

Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

One-dimensionally nanostructured materials, such as nanowires and nanotubes, are the smallest dimensional structures for efficient transport of electrons and excitons, and are therefore critical building blocks for nanoscale electronic and mechanical devices. In this paper, boron nanowires with uniform diameters from 20 to 80 nm were synthesized by radio-frequency magnetron sputtering of pure boron powder and B2O3 powder mixtures in argon atmosphere. The boron nanowires produced stand vertically on the substrate surface to form well-ordered arrays over large areas with self-organized arrangements without involvement of any template and patterned catalyst. The high-density boron nanowires are parallel to each other and well distributed, forming highly ordered and uniform arrays. A more interesting and unique feature of the boron nanowires is that most of their tips are flat rather than hemispherical in morphologies. Detailed studies on its structure and composition indicate that boron nanowires are amorphous. Boron nanowire appears as a new member in the family of one-dimensional nanostructures. Considering the unique properties of boron-rich solids and other nanostructures, it is reasonable to expect that the boron nanowires will display some exceptional and interesting properties. A vapor-cluster-solid (VCS) mechanism was proposed to explain the growth of boron nanowires based on our experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emin, D., Icosahedral boron-rich solids, Phys. Today, 1987, 20: 55–62.

    Article  Google Scholar 

  2. Donohue, J., The Structure of the Elements, Malabar: R E Krieger, 1982, 48–83.

    Google Scholar 

  3. Greenwood, N. N., Boron, in Comprehensive Inorganic Chemistry, Vol. 1 (eds. Bailar, Jr. J. C., Emeléus, H. J., Sir, R. et al.), Oxford: Pergamon, 1973, 665–991.

    Google Scholar 

  4. Matkovich, V. I. (ed.), Boron and Refractory Borides, New York: Springer-Verlag, 1977.

    Google Scholar 

  5. Eremets, M. I., Struzhkin, V. V., Mao, H. K. et al., Superconductivity in boron, Science, 2001, 293: 272–274.

    Article  ADS  Google Scholar 

  6. Geballe, T. H., Super boron, Science, 2001, 293: 223–224.

    Article  Google Scholar 

  7. Nagamatsu, J., Nakagawa, N., Muranaka, T. et al., Superconductivity at 39 Kin magnesium diboride, Nature, 2001, 410: 63–64.

    Article  ADS  Google Scholar 

  8. Cava, R. J., Genie in a bottle, Nature, 2001, 410: 23–24.

    Article  ADS  Google Scholar 

  9. Service, R. F., Physicists scramble to recapture the magic, Science, 2001, 291: 2295–2296.

    Article  Google Scholar 

  10. Boustani, I., Systematicab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n=2–14), Phys. Rev. B, 1997, 55: 16426–16438.

    Article  ADS  Google Scholar 

  11. Niu, J., Rao, B. K., Jena, P., Atomic and electronic structures of neutral and charged boron and boron-rich clusters, J. Chem. Phys., 1997, 107: 132–140.

    Article  ADS  Google Scholar 

  12. Gindulyte, A., Lipscomb, W. N., Massa, L., Proposed boron nanotubes, Inorg. Chem., 1998, 37: 6544–6545.

    Article  Google Scholar 

  13. Gindulyte, A., Krishnamachari, N., Lipscomb, W. N. et al., Quantum chemical calculations of proposed multicage boron fullerenes, Inorg. Chem., 1998, 37: 6546–6548.

    Article  Google Scholar 

  14. Boustani, I., Quandt, A., Hernandez, E. et al., New boron based nanostructured materials, J. Chem. Phys., 1999, 110: 3176–3185.

    Article  ADS  Google Scholar 

  15. Hu, J. T., Odom, T. W., Lieber, C. M., Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 1999, 32: 435–445.

    Article  Google Scholar 

  16. Ajayan, P. M., Ebbesen, T. W., Nanometre-size tubes of carbon, Rep. Prog. Phys., 1997, 60: 1025–1062.

    Article  ADS  Google Scholar 

  17. Dresselhaus, M. S., Dresselhaus, G., Ecklund, P. C., Science of Fullerenes and Carbon Nanotubes, New York: Academic, 1996.

    Google Scholar 

  18. Colins, P. G., Avouris, P. G., A. Nanotubes for electronics, Sci. Am. 2000, 283 (12): 62–69.

    Article  Google Scholar 

  19. Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, 354: 56–58.

    Article  ADS  Google Scholar 

  20. Ebbesen, T. W., Ajayan, P. M., Large-scale synthesis of carbon nanotubes, Nature, 1992, 358: 220–222.

    Article  ADS  Google Scholar 

  21. Amelinckx, S., Zhang, X. B., Bernaerts, D. et al., A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 1994, 265: 635–639.

    Article  ADS  Google Scholar 

  22. Thess, A., Lee, R., Nikolaey, P. et al., Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483–487.

    Article  ADS  Google Scholar 

  23. Duan, X. F., Lieber, C. M., General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12: 298–302.

    Article  Google Scholar 

  24. Dai, H. J., Wong, E. W., Lu, Y. Z. et al., Synthesis and characterization of carbide nanorods, Science, 1995, 375: 769–772.

    Google Scholar 

  25. Whitney, T. M., Jiang, J. S., Searson, P. C. et al., Fabrication and magnetic properties of arrays of metallic nanowires, Science, 1993, 261: 1316–1319.

    Article  ADS  Google Scholar 

  26. Yu, D. P., Bai, Z. G., Ding, Y. et al., Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett., 1998, 72: 3458–3460.

    Article  ADS  Google Scholar 

  27. Huang, M. H., Wu, Y. Y., Feick, H. et al., Catalytic growth of zinc oxide nanowires by vapor transport Adv. Mater., 2001, 13: 113–116.

    Article  ADS  Google Scholar 

  28. Han, W. Q., Fan, S. S., Li, Q. Q. et al., Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 1997, 277: 1287–1289.

    Article  Google Scholar 

  29. Morales, A. M., Lieber, C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279: 208–211.

    Article  ADS  Google Scholar 

  30. Suenaga, K., Colliex, C., Demoncy, N. et al., Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon, Science, 1997, 278: 653–655.

    Article  ADS  Google Scholar 

  31. Zhang, Y., Suenaga, K., Colliex, C. et al., Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science, 1998, 281: 973–975.

    Article  ADS  Google Scholar 

  32. Hu, J. T., Ouyang, M., Yang, P. D. et al., Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires, Nature, 1999, 399: 48–51.

    Article  ADS  Google Scholar 

  33. Zhang, Y., Ichihashi, T., Landree, E. et al., Heterostructures of single-walled carbon nanotubes and carbide nanorods, Science, 1999, 285: 1719–1721.

    Article  Google Scholar 

  34. Gudiksen, M. S., Lauhon, L. J., Wang, J. F. et al., Growth of nanowire superlattice structure for nanoscale photonics and electronics, Nature, 2002, 415: 617–620.

    Article  ADS  Google Scholar 

  35. Pan, Z. W., Dai, Z. R., Wang, Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291: 1947–1949.

    Article  ADS  Google Scholar 

  36. Chopra, N. G., Luyken, R. J., Cherrey, K. et al., Boron nitride nanotubes, Science, 1995, 269: 966–967.

    Article  ADS  Google Scholar 

  37. Tenne, R., Margulis, L., Genut, M. et al., Polyhedral and cylindrical structures of tungsten disulphide, Nature, 1992, 360: 444–446.

    Article  ADS  Google Scholar 

  38. Feldman, Y., Wasserman, E., Srolovitz, D. J. et al., High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 1995, 267: 222–225.

    Article  ADS  Google Scholar 

  39. Ajayan, P. M., Stephan, O., Colliex, C. et al., Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite, Science, 1994, 265: 1212–1214.

    Article  ADS  Google Scholar 

  40. De Heer, W. A., Bacsa, W. S., Chatelain, A. et al., Aligned carbon nanotube films: Production and optical and electronic properties, Science, 1995, 268: 845–847.

    Article  ADS  Google Scholar 

  41. Li, W. Z., Xie, S. S., Qian, L. X. et al., Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274: 1701–1703.

    Article  ADS  Google Scholar 

  42. Li, J., Papadopulus, C., Xu, J. M., Growing Y-Junction nanotubes, Nature, 1999, 402: 253–254.

    ADS  Google Scholar 

  43. Fan, S. S., Chapline, M. G., Franklin, N. R. et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 1999, 283: 512–514.

    Article  ADS  Google Scholar 

  44. Huang, M. H., Mao, S., Feick, H. et al., Room-temperature ultraviolet nanowire nanolasers, Science 2001, 292: 1897–1899.

    Article  ADS  Google Scholar 

  45. Frank, F. C., The influence of dislocation on crystal growth, Disc. Faraday Soc., 1949, 5: 48–54.

    Article  Google Scholar 

  46. Wagner, R. S., Ellis, W. C., Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 1964, 4: 89–90.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Limin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Zhang, Z. & Wang, W. Magnetron sputtering synthesis of large area well-ordered boron nanowire arrays. Sci China Ser G: Phy & Ast 47, 403–415 (2004). https://doi.org/10.1360/03yw0167

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yw0167

Keywords

Navigation