Skip to main content
Log in

Optical activity of microemulsion induced by electric field and its tunable behaviors

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

It has been shown that optical activity can occur in microemulsion under external electric field and rotation angle can also be tuned by the electric field. A set of microemulsions (water/Span80/transformer oil) with different water concentration were prepared and their optical activity was measured with the changes of applied electric field and θ, the angle between the electric vector of the incident linearly polarized light and the external electric field, using an automatic polarimeter. The experiments indicate that when none of the external electric field, water concentration and θ are zero, there is optical activity in microemulsions. For a given concentration, rotation angle ψ increases with electric field, and it firstly increases, passes through a maximum atC=C 0, then monotonically decreases asC increases when electric field keeps constant. The relationship between the rotation angle and θ is also obtained. It is thought that the electric field-induced destroy of spatial symmetry of microemulsion is responsible for the optical activity of microemulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Degennes, P. G., Soft matter, Rev. Mod. Phys., 1992, 64(3): 645–648.

    Article  ADS  Google Scholar 

  2. Yamamobo, J., Tanaka, H., Transparent nematic phase in a liquid-crystal-based microemulsion, Nature, 2001, 409(6818): 321–325.

    Article  ADS  Google Scholar 

  3. Huang, J. S., Safran, S. A., Kim, M. W. et al., Attractive interactions in micelles and microemulsions, Phys. Rev. Lett., 1984, 53(6): 592–595.

    Article  ADS  Google Scholar 

  4. Degiorgio, V., Bellini, T., Piazza, R. et al., Stretched-experimental relation of electric birefringence in polymer solutions, Phys. Rev. Lett., 1990, 64(9): 1043–1046.

    Article  ADS  Google Scholar 

  5. Wu, X.-L., Pine, D. J., Dixon, P. K., Enhanced concentration fluctuations in polymer solutions under shear flow, Phys. Rev. Lett., 1991, 66 (18): 2408–2411.

    Article  ADS  Google Scholar 

  6. Wu, X.-L., Yeung, C., Kim, M. W. et al., Study of internal modes of a “living polymer” by transient electric birefringence, Phys. Rev. Lett., 1992, 68(9): 1426–1429.

    Article  ADS  Google Scholar 

  7. Edwards, M. E., Wu, X. L., Wu, J.-S. et al., Electric-field effects on a droplet microemulsion, Phys Rev. E., 1998, 57(1): 797–803.

    Article  ADS  Google Scholar 

  8. Edwards, M. E., Hwang, Y. H., Wu, X. L., Large deviations from the Clausius-Mossotti equation, Phys. Rev. E, 1994, 49(5): 4263–4267.

    Article  ADS  Google Scholar 

  9. Vicari, L., Laser beam self-phase modulation by a film of water-in-oil microemulsion, Europhys. Lett., 2000, 49(5): 564–568.

    Article  ADS  Google Scholar 

  10. van der Linden, E., Geiger, S., Bedeaux, D., The kerr constant of a microemulsion for a low volume fraction of water, Physica A, 1989, 156: 130–143.

    Article  ADS  Google Scholar 

  11. Borkovec, M., Eicke, H. F., Surfactant monolayer rigidities from kerr effect measurements on microemulsion, Chem. Phys. Lett., 1989, 157: 457–461.

    Article  ADS  Google Scholar 

  12. Mayer, G., On negative kerr effects in microemulsions, Chem. Phys. Lett., 1990, 168(6): 575–578.

    Article  ADS  Google Scholar 

  13. Pan, X. D., Mckinley, G. H., Electrorheological response of emulsion system, J. Colloid. Interface Science, 1997, 195: 101–113.

    Article  Google Scholar 

  14. Zhao, X. P., Luo, C. R., Zhang, Z. D., Optical characteristics of electrorheological and magnetorheological fluids, Opt. Eng., 1998, 37(5): 1589–1592.

    Article  ADS  Google Scholar 

  15. Liu, X. H., Zhao, X. P., An adjustable property of electrorheological fluids, Acta Optica Sinica (in Chinese), 1996, 16(8): 1211–1214.

    Google Scholar 

  16. Fan, J. J., Zhao, X. P., Gao, X. M. et al., Electric field regulating behavior of microwave propagation in ER fluids, J. Phys. D: Appl. Phys., 2002, 35: 88–94.

    Article  ADS  Google Scholar 

  17. Zhao, X. P., Qu, C. Z., Ma, Y., Double refraction phenomenon of electrorheological fluids, Int. J. Mod. Phy. B, 2001, 15(7): 1057–1061.

    Article  ADS  Google Scholar 

  18. Chen, S. H., Rouch, J., Sciortino, F. et al., Static and dynamic properties of water-in-oil microemulsions near the critical and percolation points, J. Phys.: Condens. Matter., 1994, 6: 10855–10883.

    Article  ADS  Google Scholar 

  19. Hudson, A., Nelson, R., University Physics, New York: Harcourt Brace Jovanovich, Inc., 1982, 865–867.

    Google Scholar 

  20. Zhao, Q., Gao, X. M., Zhao, X. P., Optical activity of electrorheological fluids, Acta Optica Sinica (in Chinese), 2002, 22(5): 616–621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Xiaopeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaopeng, Z., Qian, Z. & Liqin, X. Optical activity of microemulsion induced by electric field and its tunable behaviors. Sci China Ser G: Phy & Ast 46, 164–172 (2003). https://doi.org/10.1360/03yg9022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yg9022

Keywords

Navigation