Skip to main content
Log in

A novel method for spatio-temporal pattern analysis of brain fMRI data

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

A novel data processing procedure for fMRI was suggested in this paper, by which spatial and temporal characteristics of stimuli-induced signal dynamic responses can be investigated simultaneously. First the multitaper spectral estimation was utilized to estimate the spectrum of each voxel; the significance of the line frequency components at the interested frequency was tested to detect the task-related cortex areas; the temporal independent component analysis (tICA) was then applied to the activated voxels to obtain stimuli-induced signal dynamic responses. The advantages of this procedure are: few assumptions are needed for the cerebral hemodynamics and spatial distribution of task-related areas, problems which often appear in tICA analysis of fMRI data, such as the lack of stability, reliability and robustness, are overcome by the suggested method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogawa, S., Menton, R. S., Tank, D. W. et al., Functional brain mapping by blood oxygen level dependent contrast, Biophysical Journal, 1993, 64: 803–812.

    Google Scholar 

  2. Friston, K. J., Jezzard, P., Turner, R., Analysis of functional MRI time series, Human Brain Mapping, 1994, 1: 153–171.

    Article  Google Scholar 

  3. Friston, K. J., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, 1995, 2: 189–210.

    Article  Google Scholar 

  4. Jutten, C., Hérault, J., Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, 1991, 24: 1–10.

    Article  MATH  Google Scholar 

  5. Hyvärinen, A., Karhunen, J., Oja, E., Independent Component Analysis, New York: John Wiley & Sons, Inc., 2001.

    Google Scholar 

  6. Jung, T. P., Makeig, S., McKeown, M. J. et al., Imaging brain dynamics using independent component analysis, Proceedings of the IEEE, 2001, 89: 1107–1122.

    Article  Google Scholar 

  7. Makeig, S., Jung, T. P., Bell, A. J. et al., Blind separation of auditory event-related brain responses into independent components, Proc. Natl. Acad. Sci. USA, 1997, 94: 10979–10984.

    Article  Google Scholar 

  8. McKeown, M. J., Makeig, S., Brown, G. G. et al., Analysis of fMRI data by blind separation into independent spatial components, Human Brain Mapping, 1998, 6: 160–188.

    Article  Google Scholar 

  9. Biswal, B. B., Ulmer, J. L., Blind source separation of multiple signal sources of fMRI data sets using independent component analysis, J. Comput. Assist. Tomogr., 1999, 23: 265–271.

    Article  Google Scholar 

  10. Calhoun, V., Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms, Human Brain Mapping, 2001, 13: 43–53.

    Article  Google Scholar 

  11. McKeown, M. J., Sejnowski, T. J., Independent component analysis of fMRI data: examining the assumptions, Human Brain Mapping, 1998, 6: 368–372.

    Article  Google Scholar 

  12. Esposito, F., Formisano, E., Seifritz, E. et al., Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?, Human Brain Mapping, 2002, 16: 146–157.

    Article  Google Scholar 

  13. Seifritz, E., Esposito, F., Hennel, F. et al., Spatiotemporal pattern of neural processing in the human auditory cortex, Science, 2002, 297: 1706–1708.

    Article  Google Scholar 

  14. Chen, H. F., Yao, D. Z., Sue Becker et al., A new method for fMRI data processing: Neighborhood independent component correlation algorithm and its preliminary application, Science in China, Ser. F, 2002, 45(5): 373–382.

    Article  MATH  Google Scholar 

  15. Thomson, D. J., Spectrum estimation and harmonic analysis, Proceedings of the IEEE, 1982, 70: 1005–1096.

    Article  Google Scholar 

  16. Thomson, D. J., The seasons, global temperature, and precession, Science, 1995, 268: 59–68.

    Article  Google Scholar 

  17. Mitra, P. P., Pesaran, B., Analysis of dynamic brain imaging data, Biophysical Journal, 1999, 76: 691–708.

    Article  Google Scholar 

  18. Percival, D. B., Walden, A. T., Spectral Analysis for Physical Applications, Cambridge: Cambridge University Press, 1993, 368–370.

    MATH  Google Scholar 

  19. Riedel, K. S., Sidorenko, A., Minimum bias multiple taper spectral estimation, IEEE Trans. on Signal Processing, 1995, 43(1): 188–195.

    Article  Google Scholar 

  20. Kruger, G., Glover, G. H., Physiological noise in oxygenation-sensitive magnetic resonance imaging, Magn. Reson. Med., 2001, 46: 631–637.

    Article  Google Scholar 

  21. Hyvärinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. on Neural Networks, 1999, 10(3): 626–634.

    Article  Google Scholar 

  22. Roland, P. E., Larsen, B., Lassen, N. A. et al., Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol., 1980, 43: 118–136.

    Article  Google Scholar 

  23. Moritz, C. H., Meyerand, M. E., Cordes, D. et al., Functional MR imaging activation after finger tapping has a shorter duration in the basal ganglia than in the sensorimotor cortex, AJNR Am. J. Neuroradiol, 2000, 21: 1228–1234.

    Google Scholar 

  24. Moritz, C. H., Haughton, V. M., Cordes, D. et al., Whole-brain functional MR imaging activation from a finger-tapping task, examined with independent component analysis, AJNR Am. J. Neuroradiol., 2000, 21: 1629–1635.

    Google Scholar 

  25. Mayhew, J., Hu, D. W., Zheng, Y. et al., An evaluation of linear model analysis techniques for processing images of microcirculation activity, NeuroImage, 1998, 7(1): 49–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Dewen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhou, Z., Hu, D. et al. A novel method for spatio-temporal pattern analysis of brain fMRI data. Sci China Ser F 48, 151–160 (2005). https://doi.org/10.1360/03yf0530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yf0530

Keywords

Navigation