Skip to main content
Log in

Blind recognition of punctured convolutional codes

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for blind recognition of punctured convolutional codes which is an important problem in adaptive modulation and coding. For a given finite sequence of convolutional code, the parity check matrix of the convolutional code is first computed by solving a linear system with adequate error tolerance. Then a minimal basic encoding matrix of the original convolutional code and its puncturing pattern are determined according to the known parity check matrix of the punctured convolutional code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouini, M. S., Goldsmith, A. J., Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques, IEEE Trans. Veh. Technol., 1999, 48(4): 1165–1181.

    Article  Google Scholar 

  2. Goldsmith, A. J., Chua, S. G., Variable-rate variable-power MQAM for fading channels, IEEE Trans. Comm., 1997, 45(10): 1218–1230.

    Article  Google Scholar 

  3. Lee, J. M., Song, I., Jung, S. et al., A rate adaptive convolutional coding method for multicarrier DS/CDMA systems, MILCOM 2000, Los Angeles, October 2000, 932–936.

  4. Barton, M., Punctured convolutional codes for supporting PCS access to ATM networks, ICC’99, Vanconver, June 1999, 1880–1884.

  5. Hagenauer, J., Rate-compatible punctured convolutional codes (RCPC Codes) and their application, IEEE Trans. Comm., 1988, 36(4): 389–400.

    Article  Google Scholar 

  6. Cain, J. B., Clark, G. C., Geist, J. M., Punctured convolutional codes of rate(n−1)/n and simplified maximum likelihood decoding, IEEE Trans Inform Theory, 1979, 25(1): 97–100.

    Article  MathSciNet  Google Scholar 

  7. Begin, G., Haccoun, D., High-rate punctured convolutional codes: structure properties and construction techniques, IEEE Trans. Comm., 1989, 37(11): 1381–1385.

    Article  MathSciNet  Google Scholar 

  8. McEliece, R. J., The algebraic theory of convolutional codes, in Handbook of Coding Theory, Amsterdam: Elesevier, 1999.

    Google Scholar 

  9. Shen, B. Z., Patapoutian, A., McEwen, P. A., Punctured recursive convolutional encoders and their applications in turbo codes, IEEE Trans. Inform. Theory, 2001, 47(6): 2300–2320.

    Article  MATH  MathSciNet  Google Scholar 

  10. Johannesson, R., Zigangirov, K. S., Fundamentals of Convolutional Codes, Priscataway, NJ: IEEE Press, 1999.

    MATH  Google Scholar 

  11. Berlekamp, E. R., Algebraic Coding Theory, New York: McGrw-Hill, 1968.

    MATH  Google Scholar 

  12. Chose, P., Joux, A., Mitton, M., Fast correlation attacks: An algorithmic point of view, EUROCRYPT 2002, LNCS 2332, Berlin: Springer-Verlag, 2002, 209–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Peizhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Li, S., Zou, Y. et al. Blind recognition of punctured convolutional codes. Sci China Ser F 48, 484–498 (2005). https://doi.org/10.1360/03yf0480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yf0480

Keywords

Navigation