Skip to main content
Log in

Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Based on the analysis of the boundaries of 70 magnetic clouds from 1967 to 1998, and relatively complete spacercraft observations, it is indicated that the magnetic cloud boundaries are boundary layers formed through the interaction between the magnetic clouds and the ambient medium. Most of the outer boundaries of the layers, with relatively high proton temperature, density and plasma β, are magnetic reconnection boundaries, while the inner boundaries, with low proton temperature, proton density and plasma β, separate the main body of magnetic clouds, which has not been affected by the interaction, from the boundary layers. The average time scale of the front boundary layer is 1.7 h and that of the tail boundary layer 3.1 h. It is also found that the magnetic probability distribution function undergoes significant changes across the boundary layers. This new definition, supported by the preliminary numerical simulation in principle, could qualitatively explain the observations of interplanetary magnetic clouds, and could help resolve the controversy in identifying the boundaries of magnetic clouds. Our concept of the boundary layer may provide some understanding of what underlies the observations, and a fresh train of thought in the interplanetary dynamics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, S., Ferraro, V. C. A. Solar streams of corpuscles, their geometry, absorption of light and penetration, Monthly Notices Roy. Astron. Soc., 1929, 89: 470–475.

    Google Scholar 

  2. Morrison, P., Solar-connection variations of the cosmic rays, Phys. Rev., 1954, 95: 616–620.

    Google Scholar 

  3. Cocconi, G., Gold, T., Greisen, K. et al., The cosmic ray flare effect, Nuovo Cimento, 1958, 8: 161–165.

    Article  Google Scholar 

  4. Gold, T., Magnetic storms, Space Science Rev., 1962, 1: 100–104.

    Article  Google Scholar 

  5. Burlaga, L. F., Mariani, S. F., Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 Observations, J. Geophys. Res., 1981, 86: 6673–6684.

    Article  Google Scholar 

  6. Klein, L. W., Burlaga, L. F., Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1982, 87: 613–624.

    Article  Google Scholar 

  7. Burlaga, L. F., Magnetic Clouds, Physics of the Inner Heliosphere (eds. Schwenn, R., March, E.), Berlin-Heidelberg: Springer-Verlag, 1991, 1–19.

    Google Scholar 

  8. Burlaga, L. F., Interplanetary Magnetohydrodynamics, International Series on Astronomy and Astrophysics, New York-Oxford: Oxford University Press, 1995, 112.

    Google Scholar 

  9. Geranios, A., Magnetically closed regions in the solar wind, Astrophys. Space Sci., 1982, 81: 103–109.

    Article  Google Scholar 

  10. Smith, E. J., Identification of interplanetary tangential and rotational discontinuities, J. Geophys. Res., 1973, 78: 2054–2063.

    Article  Google Scholar 

  11. Vandas, M. F., Pelant, P., Geranios, A., Evidence for a spheroidal structure of magnetic clouds, J. Geophys. Res., 1993, 98: 21061–21069.

    Article  Google Scholar 

  12. Lepping, R. P., Behannon, K. W., Magnetic field directional discontinuities: 1 Minimum variance errors, J. Geophys. Res., 1980, 85: 4695–4703.

    Article  Google Scholar 

  13. Vandas, M., Fischer, S., Odstrail, D., et al., Coronal Mass Ejections: A Numerical Study of Flux Ropes (eds. Crooker, N., Joselyn, J. A., Feynman, J.), Washington D C: American Geophysical Society, 1997, 169–176.

    Google Scholar 

  14. Marubashi, K., Coronal Mass Ejections: Interplanetary Magnetic Flux Ropes and Solar Fialaments (eds. Crooker, N., Joselyn, J. A., Feynman, J.), Washington D C: Geophysical Monography 99, 1997, 147–156.

    Google Scholar 

  15. Bothmer, V., Rust, D. M., Coronal Mass Ejections: The Field Configuration of Magnetic Clouds and the Solar Cycle (eds. Crooker, N., Joselyn, J. A., Feynmann, J.), Washington D C: American Geophysical Society, 1997, 137–146.

    Google Scholar 

  16. Wei Feingsi, Schwenn, R., Hu Qiang, Magnetic reconnection events in the interplanetary space, Science in China, Series E, 1997, 40: 463–471.

    Article  Google Scholar 

  17. Burlaga, L. F., Lepping, R., Weber, R. et al., Interplanetary particles and fields, November 22 to December 6, 1977: Helios, Voyager and IMP observations between 0.6 AU and 1.6 AU, J. Geophys. Res., 1980, 85: 2227–2242.

    Article  Google Scholar 

  18. Marsden, R. G., Sanderson, T. R., Tranquiller, C., Wenzel K-P ISEE-3 observations of low energy proton bidriectional events and their relation to isolated interplanetary magnetic structures, J. Geophys. Res., 1987, 92: 11009–11019.

    Google Scholar 

  19. Gosling, J. T., Baker, D. N., Bame, S. J., et al., Bidirectional solar wind electron heat flux events, J. Geophys. Res., 1987, 92:8519–8535.

    Article  Google Scholar 

  20. Osherovich, V. A., Farrugia, C. J., Burlaga, L. F. et al., Polytropic relationship for magnetic clouds, J. Geophys. Res., 1993, 98: 15331–15342.

    Article  Google Scholar 

  21. Farrugia, C. J., Fitzenreiter, R. J., Burlaga, L. F. et al., Observations in the sheath region ahead of magnetic clouds and in the dayside magnetosheasth during cloud passage, Adv. Space Res., 1994, 114: 105–109.

    Article  Google Scholar 

  22. Fainberg, J., Osherovich, V. A., Stone, R. G. et al., Solar Wind Eight: Observations of electron and proton components in a magnetic cloud and related wave activity, in AIP Conference Proceedings, 382 (eds. Winterhalter, D., Gosling, J., Habbal, S. R., et al.), 1995, 554–560.

  23. Tsurutani, B. T., Christian, H. M., A review of discontinuities and Alfven waves in interplanetary space: Ulyssess results, Review of Geophysics, 1999, 37: 517–532.

    Article  Google Scholar 

  24. Farrugia, C. J., Burlaga, L. F., Lepping, L. F., Magnetic Storms: Magnetic clouds and the quiet-storm effect at earth, in Tsurutani Geophysical Monograph 98 (eds. Walter, B. T., Kamide, D. G., Araballo, J.), New York: American Geophysical Society, 1997, 91–106.

    Google Scholar 

  25. Gonzalez, W. D., Tsurutani, B. T., Crteria of interplanetary parameters causing intense magnetic stoms (Dst ≤100 nT) Planet Space Sci., 1987, 35: 1101–1109.

    Article  Google Scholar 

  26. Zhang, G., Burlaga, L. F., Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 1988, 95: 2511–2518.

    Article  Google Scholar 

  27. Tsurutani, B. T., Gonzalez, W. D., Tang, F., et al., Great magnetic storms, Geophys. Res Lett., 1992, 19: 73–76.

    Article  Google Scholar 

  28. Lepping, R. P., Jones, J. A., Burlaga, L. F., Magnetic field structure of interplanetary magnetic clouds at 1AU, J. Geophys. Res., 1990, 95: 11957–11965.

    Article  Google Scholar 

  29. Wilson, R. M., On the behavior of the Dst geomagnetic index in the vicinity of magnetic clouds passages at Earth, J. Geophys. Res., 1990, 95: 215–219.

    Article  Google Scholar 

  30. Burlaga, L. F., Magnetic clouds: Constant alpha force-free Configurations, J. Geophys. Res., 1988, 93: 7217–7224.

    Article  Google Scholar 

  31. Feng Xueshang, Wu, S. T., Fan Quanlin et al., A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation, Chinese Journal of Space Science, 2002, 22, in press.

  32. Vands, M., Fischer, S., Dryer, M., et al., Simulation of magnetic cloud propagation in the inner heliosphere in two dimensions 2. A loop perpendicular to the ecliptic plane, Geophys. Res., 1995, 100:12285–12292.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fengsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F., Liu, R., Fan, Q. et al. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary. Sci. China Ser. E-Technol. Sci. 46, 19–32 (2003). https://doi.org/10.1360/03ye9002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03ye9002

Keywords

Navigation