Global correlation for strontium isotope curve in the Late Cretaceous of Tibet and dating marine sediments

  • Huang Sijing 
  • Shi He 
  • Shen Licheng 
  • Zhang Meng 
  • Wu Wenhui 


87Sr/86Sr ratios of marine carbonate samples collected from a sedimentary section of the Late Cretaceous in the south of Tibet were measured. Based on the absence of cathodo-luminescence and a very low Mn/Sr ratio (average 0.06) of the samples, it is thought that they contain information on the original seawater strontium isotope composition. The strontium isotope evolution curve of the Late Cretaceous in Tibet we established here, is consistent with other coeval curves from Europe, North America and Antarctica, supports the notion that the strontium isotope composition of seawater is governed by global events, which provides a new approach for the inter-continental and inter-basinal correlations of Late Cretaceous in the area and is a complementarity for biostratigraphy. In addition, we attempt to determine the age of the boundaries for Campanian/Santonian and Maastrichtian/Campanian by87Sr/86Sr ratios for Gamba section in southern Tibet. The two boundaries are located in the thickness of 217 m (83.5 Ma) and 291 m (71.3 Ma), respectively.


southern Tibet Late Cretaceous marine carbonate strontium isotope global correlation dating marine sediments 


  1. 1.
    Palmer, M. R., Edmond, J. M., The strontium isotope budget of the modern ocean, Earth Planet Sci. Lett., 1989, 92: 11–26.CrossRefGoogle Scholar
  2. 2.
    Palmer, M. R., Elderfield, H., Sr isotope composition of sea water over the past 75 Myr, Nature, 1985, 314: 526–528.CrossRefGoogle Scholar
  3. 3.
    Derry, L. A., Kaufman, A. J., Jacobsen, S. B., Sediment cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes, Geochim. Cosmochim. Acta, 1992, 56: 1317–1329.CrossRefGoogle Scholar
  4. 4.
    Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., The Vendian record of Sr and C isotopic variations in seawater. Implications for tectonics and paleoclimate, Earth Planet Sci. Lett., 1993, 120: 409–430.CrossRefGoogle Scholar
  5. 5.
    Martin, E. E., Macdougall, J. D., Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change, Chem Geol, 1995, 125: 73–99.CrossRefGoogle Scholar
  6. 6.
    McArthur, J. M., Donovan, D. T., Thirlwall, M. F. et al., Strontium isotope profile of the early Toarcian (Jurassic) Oceanic Anoxic Event, the duration of ammonite biozones, and belemnite paleo-temperatures, Earth Planet Sci. Lett., 2000, 179: 269–285.CrossRefGoogle Scholar
  7. 7.
    Montañez, I. P., Banner, J. L., Oslcger, D. A. et al. Integrated Sr isotope variations and sea-level history of middle to upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr, Geology, 1996, 24: 917–920.CrossRefGoogle Scholar
  8. 8.
    Montañez, I. P., Osleger, D. A., Banner, J. L. et al. Evolution of the Sr and C isotope composition of Cambrian oceans, GSA Today, 2000, 10: 1–7.Google Scholar
  9. 9.
    Oslick, J. S., Miller, K. G., Feigenson, M. D. et al. Oligocene-Miocene strontium isotopes:stratigraphic revsions and correlations to an inferred glacioeustatic record, Paleoceanography, 1994, 9: 427–443.CrossRefGoogle Scholar
  10. 10.
    Qing, H., Barnes, C. R., Buhl, D. et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval seawater, Geochim Cosmochim Acta, 1998, 62: 1721–1723.CrossRefGoogle Scholar
  11. 11.
    Zachos, J. C., Opdyke, B. N., Quinn, T. M. et al. Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: is there a link? Chem Geol, 1999, 161: 165–180.CrossRefGoogle Scholar
  12. 12.
    Huang Sijing, Carbon, strontium isotopes of marine carbonate rocks of Middle-Upper Devonian in Ganxi, Northwestern Sichuan Province and their geological significance, Acta Petrologica Sinica (in Chinese with English abstract), 1993, 9(suppl.): 214–221.Google Scholar
  13. 13.
    Huang Sijing, Zhou Shaohua, Carbon and strontium isotopes of Late Paleozoic marine carbonates in the Upper Yangtze platform, Southwest China, Acta Geologica Sinica (English edition), 1997, 71(3): 282–292.Google Scholar
  14. 14.
    Huang Sijing, Shi He, Zhang Meng et al., Strontium Isotope Evolution and Global Sea-Level Changes of Carboniferous and Permian Marine Carbonate, Upper Yangze Platform, Actasedimintologica Sinica (in Chinese with English abstract), 2001, 19(4): 481–487.Google Scholar
  15. 15.
    Huang Sijing, Liu Jie, Shen Licheng, Progress in Strontium Isotope Stratigraphy, Advance in Earth Sciences (in Chinese with English abstract), 2001, 16(2): 194–200.Google Scholar
  16. 16.
    Wang Zhongcheng, Chu Xuelei, Strontium isotopic ratios of barite and witherite in late Cambrian, Chinese Science Bulletin (in Chinese), 1993, 38(16): 1490–149.Google Scholar
  17. 17.
    Jiang Maosheng, Zhu Jingquan, Chen Daizhao et al. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin, Science in China, Ser. D, 2001, 44(9): 816–823.Google Scholar
  18. 18.
    Zhang Zichao, 87Sr/86Sr data for some Middle-Late Proterozoic to Early Cambrian carbonate rocks in China, Geological Review (in Chinese with English abstract), 1995, 41(4): 349–354.Google Scholar
  19. 19.
    Allegre, C. J., Gaillardet, J., Meynadier, L., The evolution of sea water strontium isotope in the last hundred million years: reinter-pretation and consequence for erosion and climate models, Eos, Transactions, American Geophysical Union, 1996, 77(46, Suppl.): 325.Google Scholar
  20. 20.
    Denison, R. E., Koepnick, R. B., Burke, W. H. et al., Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve, Chem Geol, 1998, 152: 325–340.CrossRefGoogle Scholar
  21. 21.
    Denison, R. E., Kirkland, D. W., Evans, R., Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds, J. Geol., 1998, 106: 1–17.Google Scholar
  22. 22.
    Diener, A., Ebneth, S., Veizer, J. et al., Strontium isotope stratigraphy of the Middle Devonian: brachiopods and conodonts, Geochim. Cosmochim. Acta, 1996, 60: 639–652.CrossRefGoogle Scholar
  23. 23.
    Dingle, R. V., McArthur, J. M., Vroon, P., Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy, J. Geol. Soc. Lond., 1997, 154: 257–264.CrossRefGoogle Scholar
  24. 24.
    Ebneth, S., Diener, A., Buhl, D. et al., Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains,Germany, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1997, 132: 79–96.CrossRefGoogle Scholar
  25. 25.
    Ingram, B. L., Rodolfo, C., Montanari, A. et al., Strontium isotopic composition of Mid-Cretaceous seawater, Science, 1994, 264: 546–550.CrossRefGoogle Scholar
  26. 26.
    McArthur, J. M., Crame, J. A., Thirlwall, MF. Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy, J. Geol., 2000, 108: 623–640.CrossRefGoogle Scholar
  27. 27.
    Mead, G. A., Hodell, D. A., Late Eocene to present strontium isotope stratigraphy: the search for controls. Eos, Transactions, American Geophysical Union, 1994, 75(16, Suppl.): 203.Google Scholar
  28. 28.
    Veizer, J., Ala, D., Azmy, K. et al. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater, Chem Geol, 1999, 161: 59–88.CrossRefGoogle Scholar
  29. 29.
    Veizer, J., Buhl, D., Diener, A. et al., Strontium isotope stratigraphy: potential resolution and event correlation, Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 132: 65–77.CrossRefGoogle Scholar
  30. 30.
    Huang Sijing, Shi He, Zhang Meng et al., Global correlation of strontium isotope evolution curve of Devonian in Longmen mountain and dating marine sediments, Progress in Natural Science (in Chinese), 2002, 12(9): 945–951.Google Scholar
  31. 31.
    Huang Sijing, Shi He, Mao Xiaodong et al., Evolution of Sr isotopes of the Cambrian sections in XiuShan, Chongqing, and related global correlation, Geological Review (in Chinese with English abstract), 2002, 48(5): 509–516.Google Scholar
  32. 32.
    Yang Jiedong, Wang Zongzhe, C, O, and Sr isotopes of Early Paleozoic strata in the Kalpin area, Xinjiang, Geological Review (in Chinese with English abstract), 1994, 40(4): 377–385.Google Scholar
  33. 33.
    Yang Jiedong, Zhang Junmin, Tao Xiancong et al., Strontium and carbon isotopic calibration of the Terminal Proterozoic, Geological Journal of China Universities (in Chinese with English abstract), 2000, 6(4): 532–545.Google Scholar
  34. 34.
    Yang Jiedong, Zheng Wenwu, Wang Zongzhe et al., Age Determining of the upper Precambrian system of northern Jiangsu-Anhui by using Sr and C isotopes, Journal of Stratigraphy (in Chinese with English abstract), 2001, 25(1): 44–47.Google Scholar
  35. 35.
    Sun Zhiguo, Liu Baozhu, Liu Jian, Strontium isotope characteristics of coral reefs in Xisha Islands and the significances in paleo- environment, Chinese Science Bulletin (in Chinese), 1996, 41(5): 434–437.Google Scholar
  36. 36.
    Li Huaqin, Cai Hong, Qin Zhengyong et al., Strontium isotope compositions of Jixian Middle-Upper Proterozoic stratatype section and their significances, Acta Geoscientia Sinica (in Chinese with English abstract), 1994, (1–2): 232–244.Google Scholar
  37. 37.
    McArthur, J. M., Burnett, J., Hancock, J. M., Strontium isotopes at K/T boundary; discussion, Nature, 1992, 355 (6355): 28.CrossRefGoogle Scholar
  38. 38.
    Wickman, F. E., Isotope ratios: a clue to the age of certain marine sediments, J. Geol., 1948, 56: 61–66.Google Scholar
  39. 39.
    Berner, R. A., GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J Sci., 1994, 294: 56–91.Google Scholar
  40. 40.
    Berner, R. A., The carbon cycle and CO2 over Phanerozoic time: The role of land plants, Royal Society Philosophical Transactions, Ser. B. 1998, 353: 75–82.CrossRefGoogle Scholar
  41. 41.
    Jenkyns, H. C., Cretaceous anoxic events: from continents to oceans, J. Geol. Soc. London, 1980, 137: 171–188.CrossRefGoogle Scholar
  42. 42.
    Schlanger, S. O., Jenkyns, H. C., Cretaceous oceanic anoxicevents: cause and consequence, Geol Mijnbown, 1976, 55: 179–184.Google Scholar
  43. 43.
    Hallam, A., Wignall, P. B., Mass extinctions and sea-level changes, Earth-Science Reviews, 1999, 48: 217–250.CrossRefGoogle Scholar
  44. 44.
    McArthur, I. M., Thirlwall, M. F., Burnett, J. et al., Strontium-isotope stratigraphy in the Late Cretaceous: a new curve, based on the English Chalk (Hailwood, E., Kidd, R.), High resolution stratigraphy, Geol. Soc. Lond. Spec. Publ., 1993, 70: 195–209.Google Scholar
  45. 45.
    McArthur, I. M., Chen, M., Gale, A. S. et al., Strontium isotope stratigraphy for the Late Cretaceous: age models and intercontinental correlations for the Campanian, Paleoceanography, 1993, 8: 859–873.CrossRefGoogle Scholar
  46. 46.
    McArthur, J. M., Kennedy, W. J., Chen, M. et al., Strontium isotope stratigraphy for Late Cretaceous time: direct numerical calibration of the Sr isotope curve based on the US Western Interior, Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 108: 95–119.CrossRefGoogle Scholar
  47. 47.
    Laughlin, O. M., McArthur, J. M., Thirlwall, M. F. et al., Sr isotope evolution of Maastrichtian seawater determined from the Chalk of Hemmoor, NW Germany, Terra Nova, 1995, 7: 491–499.Google Scholar
  48. 48.
    Steuber, T., Strontium isotope stratigraphy of Turonian Campanian Gosautype rudist formations in the Northern Calcareous and Central Alps (Austria and Germany), Cretaceous Research, 2001, 22: 429–441.CrossRefGoogle Scholar
  49. 49.
    Crame, J. A., McArthur, J. M., Pirrie, D. et al., Strontium isotope correlation of the basal Maastrichtian Stage in Antarctica to the Ruropean and US biostratigrapic scheme, Jorunal of the Geological Society, London, 1999, 156: 957–964.CrossRefGoogle Scholar
  50. 50.
    Hayden, H. H., The geology of Spiti. Mem, Geol. Surv. Indian, 1912, 36: 1–144.Google Scholar
  51. 51.
    Wan Xiaoqiao, Cretaceous strata and foraminifera of Gamba region, Xizang (Tibet), in Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau (in Chinese with English abstract), Beijing: Geological Publishing House, 1985, 16, 203–228.Google Scholar
  52. 52.
    Wan Xiaoqiao, Zhao Wenjin, Li Guobaio, Restudy of the Upper Cretaceous in Gamba, Tibet, Journal of Graduate School, China University of Geosciences (in Chinese with English abstract), 2000, 14(3): 281–285.Google Scholar
  53. 53.
    Zhao Wenjin, Late Cretaceous foraminiferal faunas and eustatic change in Gamba area, Southern Tibet, Geological Journal of China Universities (in Chinese with English abstract), 2001, 7(1): 106–117.Google Scholar
  54. 54.
    Zhao Wenjin, Wan Xiaoqiao, Recovery of foraminifera from the Late Cretaceous Cenomanian-Turonian mass extinction in Gamba, Southern Tibet, Acta Palaeontologica Sinica (in Chinese with English abstract), 2001, 40(2): 189–194.Google Scholar
  55. 55.
    Hu Xiumian, Wang Chengshan, Li Xianghui, Carbon stable isotopes and the event of paleo-dissolved oxygen of marine Cretaceous in Southern Tibet, Progress in Natural Science (in Chinese), 2001, 11(7): 721–728.Google Scholar
  56. 56.
    Huang Sijing, Cathodoluminescence and diagenetic alteration of marine carbonate minerals, Sedimentary Facies and Palaeo-geography (in Chinese with English abstract), 1990, (4): 9–15.Google Scholar
  57. 57.
    Huang Sijing, Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals, Journal of Mineralogy and Petrology (in Chinese with English abstract), 1992, 12(4): 74–79.Google Scholar
  58. 58.
    Derry, L. A., Keto, L., Jacobsen, S. et al., Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland, Geochimica et Cosmochimica Acta, 1989, 53: 2331–2339.CrossRefGoogle Scholar
  59. 59.
    Kaufman, A. J., Knoll, A. H., Awramik, S. M., Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case, Geology, 1992, 20: 181–185.CrossRefGoogle Scholar
  60. 60.
    Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., The Vendian record of Sr- and C-isotopic variations in seawater: implications for tectonics and paleoclimate, Earth Planet Sci. Lett., 1993, 120: 409–430.CrossRefGoogle Scholar
  61. 61.
    Jones, C. E., Jenkyns, H. C., Coe, A. L., Strontium isotope variations in Jurassic and Cretaceous seawater, Geochim. Cosmochim. Acta, 1994, 58: 3061–3074.CrossRefGoogle Scholar
  62. 62.
    McArthur, J. M., Howarth, R. J., Bailey, T. R., Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Lookup Table for Deriving Numerical Age, J. Geol., 2001, 109: 155–170.CrossRefGoogle Scholar
  63. 63.
    Koepnick, R. B., Burke, W. H., Denison, R. E. et al., Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data, Chem. Geol., 1985, 58: 55–81.CrossRefGoogle Scholar
  64. 64.
    Hess, J., Bender, M. L., Schilling, J. et al., Evolution of the ratio of strontium 87 to strontium 86 in seawater from Cretaceous to Present, Science, 1986, 231: 979–984.CrossRefGoogle Scholar
  65. 65.
    Dias-Brito, D., Global stratigraphy, palaeobiogeography and palaeoecology of Albian-Maastrichtian pithonellid calcispheres: impact on Tethys configuration, Cretaceous Research, 2000, 21: 315–349.CrossRefGoogle Scholar
  66. 66.
    Jenkyns, H. C., Impact of Cretaceous sea level rise and anoxic events on the Mesozoic carbonate platform of Yugoslavia, AAPG Bulletin, 1991, 75, 1007–1017.Google Scholar
  67. 67.
    Howarth, R. J., McArthur, J. M., Statistics for strontium isotope stratigraphy: a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with lookup table for derivation of numeric age, J. Geol., 1997, 105: 441–456.CrossRefGoogle Scholar
  68. 68.
    Palmer, A. R., Geissman, J., Geologic time scale, The Geological Society of America, Product code CTS004, 1999, 1.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Huang Sijing 
    • 1
  • Shi He 
    • 1
  • Shen Licheng 
    • 1
  • Zhang Meng 
    • 1
  • Wu Wenhui 
    • 1
  1. 1.State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, College of GeoscienceChengdu University of TechnologyChengduChina

Personalised recommendations