Skip to main content
Log in

Simulation studies of high-latitude magnetospheric boundary dynamics

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Magnetic reconnection at the high-latitude magnetopause is studied using 2.5-dimensional Hall-MHD simulation. Concentric flow vortices and magnetic islands appear when both Hall effect and sheared flow are considered. Plasma mixing across the magnetopause occurs in the presence of the flow vortices. Reconnected structure generated in the vicinity of the subsolar point changes its geometry with increasing flow shear while moving to high latitudes. In the presence of flow shear, with the Hall-MHD reconnection a higher reconnection rate than with the traditional MHD is obtained. The out-of-plane components of flow and magnetic field produced by the Hall current are redistributed under the action of the flow shear, which makes the plasma transport across the boundaries more complicated. The simulation results provide some help in understanding the dynamic processes at the high latitude magnetopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paschmann, G., Haerendel, G., Sckopke, N. et al., Plasma and magnetic field characteristics of the distant polar cusp near local noon: the entry layer, J. Geophys. Res., 1976, 81: 2883.

    Article  Google Scholar 

  2. Zong, Q. G., Fritz, T. A., Wilken, B. et al., Energetic ions in the high latitude boundary layer of the magnetopause RAPID/CLUSTER observation, Geophysical Monograph (eds. Newell, P. T., Onsager, T. G.), Washington, D. C.: American Geophysical Union, 2002, 101–110.

    Google Scholar 

  3. Haerendel, G., Paschmann, G., Interaction of the solar wind with the dayside magnetopause, in Magnetospheric Plasma Physics (ed. Nishida, A.), Center for Academic Pub., Japan, 1982.

    Google Scholar 

  4. Russell, C. T., Elphic, R. C., Initial ISEE magnetometer results: Magnetopause observations, Space Sci. Rev., 1978, 22: 681–715.

    Article  Google Scholar 

  5. Otto, A., Magnetic reconnection at the magnetopause: A fundamental process and manifold properties, Review Geophys, 1995, supp: 33.

    Google Scholar 

  6. Scholer, M., Models of flux transfer events, in Physics of the Magnetopause, Geophysical Monograph 90 (eds. Song, P., Sonnerup, B. U. O., Thomsen, M. F.), Washington, DC: American Geophysical Union, 1995, 235–245.

    Google Scholar 

  7. Lee, L. C., Fu, Z. F., A theory of magnetic flux transfer at the Earth’s magnetopause, Geophys. Res. Lett., 1985, 12: 105–108.

    Article  Google Scholar 

  8. Scholer, M., Magnetic flux transfer at the magnetopause based on single X line bursty reconnection, Geophys. Res. Lett., 1988, 15: 291–294.

    Article  Google Scholar 

  9. Liu, Z. X., Hu, Y. D., Local magnetic reconnection caused by vortices in the flow field, Geophys. Res. Lett., 1988, 15: 752–755.

    Article  Google Scholar 

  10. Pu, Z. Y., Yei, M., Liu, Z. X., Generation of vortex-induced tearing mode instability at the magnetopause, Journal of Geophysical Research, 1990, 95(A7): 10559–10566.

    Article  Google Scholar 

  11. Pu, Z. Y., Hou, P. T., Liu, Z. X., Vortex-Induced tearing mode instability as a source of flux transfer events, J. Geophys. Res., 1990, 95: 18861–18869.

    Article  Google Scholar 

  12. Pu, Z. Y., Fu, S. Y., Transient magnetic reconnection at the magnetopause in the presence of a velocity shear, Plasma Phys. Control. Fusion, 1997, 39: A251-A260.

    Article  Google Scholar 

  13. Shen, C., Liu, Z. X., The coupling mode between Kelvin-Helmholtz and resistive instabilities in compressible plasmas, Phys. Plasmas, 1999, 6: 2883–2886.

    Article  MathSciNet  Google Scholar 

  14. Chen, Q., Otto, A., Lee, L. C., Tearing instability, Kelvin-Helmholtz instability, and magnetic reconnection, Journal of Geophysical Research, 1997, 102(A1): 151–161.

    Article  Google Scholar 

  15. Berchem, J., Russell, C. T., The thickness of the magnetopause current layer: ISEE 1 and 2 observations, J. Geophys. Res., 1982, 87: 2108.

    Article  Google Scholar 

  16. Sonnerup, B. U. O., Magnetic field reconnection, in Solar System Plasma Physics (eds. Lanzerotti, L. J., Kennel, C. F., Parker, E. N.), New York: North Holland, 1979, 3: 46.

    Google Scholar 

  17. Terasawa, T., Hall current effect on tearing mode instability, Geophys. Res. Lett., 1983, 10: 475–478.

    Article  Google Scholar 

  18. Wang Xiaogang, Bhattacharjee, A., Ma, Z. W., Collisionless reconnection: Effects of Hall current and electron pressure gradient, J. Geophys. Res., 2000, 105: 27633–27648.

    Article  Google Scholar 

  19. Birn, J., Drake, J. F., Shay, M. A. et al., Geospace environmental modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 2001, 106: 3715–3719.

    Article  Google Scholar 

  20. Ma, Z. W., Bhattacharjee, A., Hall magnetohydrodynamic reconnection: The geospace environmental modeling challenge, J. Geophys. Res., 2001, 106: 3773–3782.

    Article  Google Scholar 

  21. Deng, X. H., Matsumoto, H., Rapid magnetic reconnection in the earth’s magnetosphere mediated by whistler waves, Nature, 2001, 410: 557–560.

    Article  Google Scholar 

  22. Karimabadi, H., Krauss-Varban, D., Omidi, N., et al., Magnetic structure of the reconnection layer and core field generation in plasmoids, J. Geophys. Res., 1999, 104: 12313–12316.

    Article  Google Scholar 

  23. Scholer, M., Asymmetric time-dependent and stationary magnetic reconnection at the dayside magnetopause, Journal of Geophysical Research, 1989, 94: 15099–15111.

    Article  Google Scholar 

  24. Matthaeus, W. H., Lamkin, S. L., Rapid magnetic reconnection caused by finite amplitude fluctuations, Physics of Fluids, 1985, 28: 303.

    Article  Google Scholar 

  25. Zong, Q. G., Fritz, T. A., Spence, H. et al., Bursty energetic electrons in the cusp region, Planetary and Space Science, 2003, 51: 821–830.

    Article  Google Scholar 

  26. Zong, Q. G., Fritz, T. A., Spence, H. et al., Energetic electrons as a field line topology tracer in the high latitude boundary/cusp region: cluster RAPID observations, Surveys in Geophysics 64, 2004, in press.

  27. Levy, R. H., Petschek, H. E., Siscoe, G. L., Aerodynamic aspects of the magnetospheric flow, AIAA Journal, 1964, 2: 2065–2076.

    Article  Google Scholar 

  28. Pu, Z. Y., Zong, Q. G., Fritz, T. et al., Multiple flux rope events at the high-latitude magnetopause: Cluster/RAPID observation on January 26, 2001, Survey in Geophysics 64, 2004, in press.

  29. Fu, S. Y., Pu, Z. Y., Liu, Z. X., Vortex-induced magnetic reconnection and single X line reconnection at the magnetopause, Journal of Geophysical Research, 1995, 100(A4): 5657–5663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Zuyin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Z., Shi, Q., Xiao, C. et al. Simulation studies of high-latitude magnetospheric boundary dynamics. Sci. China Ser. E-Technol. Sci. 47, 421–435 (2004). https://doi.org/10.1360/03yd0117

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yd0117

Keywords

Navigation