Skip to main content
Log in

Determining PPARγ-ligand binding affinity using fluorescent assay with cis-parinaric acid as a probe

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Upon the study of small-molecules binding to proteins, the traditional methods for calculating dissociation constants (K d and K i ) have shortcomings in dealing with the single binding site models. In this paper, two equations have been derived to solve this problem. These two equations are independent of the total concentration or initial degree of saturation of receptor and the activity of the competitive molecule. Through nonlinear fitting against these two equations, K d value of a probe can be obtained by binding assay, and K i value of a ligand can be obtained by competitive assay. Moreover, only the total concentrations of receptor([R]t), ligand([L]t) and probe([P]t) are required for the data fitting. In this work, K i values of some typical ligands of PPARγ were successfully determined by use of our equations, among which the K i value of PPARγ-LY171883 was reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harvey, M., The GraphPad Guide to Analyzing Radioligand Binding Data, http://www.graphpad.com/www/radiolig/radiolig. htm, 2003.

  2. Cheng, Y., Prusoff, W. H., Relationship between the inhibition constant(Ki) and the concentration of an inhibitor that causes a 50% inhibition (I50) of an enzymatic reaction, Biochemical Pharmacology, 1973,22: 3099–3108.

    Article  CAS  Google Scholar 

  3. Henke, B. R., Blanchard, S. G., Brackeen, M. F. et al., N-(2-Benzoylphenyl)-L-tyrosine PPARg Agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents, Journal of Medicinal Chemistry, 1998, 41(25): 5020–5036.

    Article  CAS  Google Scholar 

  4. Qiong, L., Sarah, E. R., Natacha, S. S. et al., Ligand selectivity of the peroxisome proliferator—activated receptor a, Biochemistry, 1999, 38(1):185–190.

    Article  Google Scholar 

  5. Robert, L. M., Franco, R., Irwen, H. S., A simple method for calculating the dissociation constant of a receptor, Archieves of Biochemistry and Biophysics, 1991, 284(1): 26–29.

    Article  Google Scholar 

  6. Mangelsdorf, D. J., Thummel, C., Beato, M. et al., The nuclear receptor superfamily: the second decade, Cell, 1995, 83(6): 835–839.

    Article  CAS  Google Scholar 

  7. Timothy, M. W., Peter, J. B., Daniel, D. S. et al., The PPARs: From orphan receptors to drug discovery, Journal of Medicinal Chemistry, 2000,43(4): 527–550.

    Article  Google Scholar 

  8. Causevic, M., Wolf, C. R., Palmer, C. N. A., Substitution of a conserved amino acid residue alters the ligand binding properties of peroxisome proliferator activated receptors, Federation of European Biochemiacal Societes Letters, 1999, 463(3): 205–210.

    CAS  Google Scholar 

  9. Tontonoz, P., Graves, R. A., Budavari, A. I. et al., Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha, Nucleic Acids Research, 1994, 22(25): 5628–5634.

    Article  CAS  Google Scholar 

  10. Tontonoz, P., Hu, E., Spiegelman, B. M., Stimulation of adipogenesis in fibroblasts by PPAR 2, a lipid-activated transcription factor, Cell, 1994, 79(7): 1147–1156.

    Article  CAS  Google Scholar 

  11. Ferry, G., Bruneau, V., Beauverge,r P. et al., Binding of prostaglandins to human PPARg: tool assessment and new natural ligands, European Journal of Pharmacology, 2001, 417(3): 77–89.

    Article  CAS  Google Scholar 

  12. Brown, P. J., Smith-Oliver, T. A., Charifson, P. S. et al., Identification of peroxisome proliferator-activated receptor ligands from a biased chemical library, Chem. Biol., 1997, 4(12): 909–918.

    Article  Google Scholar 

  13. Jeff, E. C., Steven, G. B., Evan, G. B. et al., N-(2-benzoylphenyl)-L-tyrosine PPARg agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent, Journal of Medicinal Chemistry, 1998, 41(25): 5055–5069.

    Article  Google Scholar 

  14. Dowell, P., Peterson, V. J., Zabriskie, T. M. et al., Ligand-induced peroxisome proliferator-activated receptor a conformational change, The Journal of Biological Chemistry, 1997, 272(3): 2013–2020.

    Article  CAS  Google Scholar 

  15. Grigorios, K., Olivier, B., Fabienne, L. H. et al., Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay, Molecular Endocrinology, 1997, 11(6):779–791

    Article  Google Scholar 

  16. Nichols, J. S., Parks, D. J., Consler, T. G. et al., Development of a scintillation proximity assay for peroxisome proliferator-activated receptor ligand binding domain, Analytical Biochemistry, 1998, 257(2): 112–119.

    Article  CAS  Google Scholar 

  17. Palmer, C. N. A., Wolf, C. R., cis-Parinaric acid is a ligand for the human peroxisome proliferator activated receptor g: development of a novel spectrophotometric assay for the discovery of PPARg ligands, Federation of European Biochemiacal Societes Letters, 1998, 431(3): 476–480.

    CAS  Google Scholar 

  18. Berde, C. B., Kerner, J. A., Johnson, J. D., Use of the conjugated polyene fatty acid, parinaric acid, in assaying fatty acids in serum orplasma, Clinical Chemistry, 1980, 26(8): 1173–1177.

    CAS  Google Scholar 

  19. Palmer, C. N. A., Hsu, M.-H., Muerhoff, A. S. et al., Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter, The Journal of Biological Chemistry, 1994, 269(27): 18083–18069.

    CAS  Google Scholar 

  20. Sklar, L. A., Hudson, B. S., Petersen, M. et al., Conjugated polyene fatty acids on fluorescent probes: spectroscopic characterization, Biochemistry, 1977, 16(5): 813–818.

    Article  CAS  Google Scholar 

  21. Christopher, G. M., Hudson, B., Wolber, P. K., Photochemical dimerization of parinaric acid in lipid bilayers, Proc. Natl. Acad. Sci. USA, 1980, 77(1): 26–30.

    Article  Google Scholar 

  22. Collins, J. L., Blanchard, S. G.., Boswell, G. E. et al., N-(2-Ben-zoylphenyl)-L-tyrosine PPARg agonists. 2. Structure-activity relationship and optimization of the phenyl alkyl ether moiety, Journal of Medicinal Chemistry, 1998, 41(25): 5037–5054.

    Article  CAS  Google Scholar 

  23. Kliewer, S. A., Lenhard, J. M., Willson, T. M. et al., A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor and promotes adipocyte differentiation, Cell, 1995, 83(5): 813–819.

    Article  CAS  Google Scholar 

  24. Leesnitzer, L. M., Parks, D. J., Bledsoe, R. K. et al., Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW 9662, Biochemistry, 2002, 41(21): 6640–6650.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Shen or Hualiang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Luo, H., Chen, L. et al. Determining PPARγ-ligand binding affinity using fluorescent assay with cis-parinaric acid as a probe. Sc. China Ser. B-Chem. 48, 122–131 (2005). https://doi.org/10.1360/03yb0217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yb0217

Keywords

Navigation