Skip to main content
Log in

Direct electron transfer of glucose oxidase on the carbon nanotube electrode

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The direct electron transfer of glucose oxidase (GOx) immobilized onto the surface of the carbon nanotube (CNT)-modified glassy carbon (CNT/GC) electrode is reported. The direct electron transfer rate of GOx is greatly enhanced when it was immobilized onto the surface of CNT/GC electrode. Cyclic voltammetric results show a pair of well-defined and nearly symmetric redox peaks, which corresponds to the direct electron transfer of GOx, with the formal potential (E 0′), which is almost independent on the scan rates, of about −0.456 V (vs. SCE) in the phosphate buffer solution (pH 6.9). The apparent heterogeneous electron transfer rate constant (ks) of GOx at the CNT/GC electrode surface is estimated to be (1.74 ± 0.42) s-1, which is much higher than that reported previously. The dependence of E 0′ on solution pH indicates that the direct electron transfer of GOx is a two-electron-transfer coupled with two-proton-transfer reaction process. The experimental results also demonstrate that the immobilized GOx retains its bioelectrocatalytic activity toward the oxidation of glucose. The method presented here can be easily extended to obtain the direct electrochemistry of other enzymes or proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frew, J. E., Hill, H. A. O., Direct and indirect electron transfer between electrodes and redox proteins, Eur. J. Biochem., 1988, 172:261–269.

    Article  CAS  Google Scholar 

  2. Santucci, R., Picciau, A., Campanella, L. et al., Electrochemistry of metalloproteins, Curr. Top Electrochem., 1994, 3: 313–328.

    CAS  Google Scholar 

  3. Armstrong, F. A., Hill, H. A. O., Walton, N. J., Direct electrochemistry of redox proteins, Acc. Chem. Res., 1998, 21: 407- 413.

    Article  Google Scholar 

  4. Gorton, L., Lindgren, A., Larsson, T. et al., Direct electron transfer between heme-containing enzymes and electrode as basis for third generation biosensors, Anal. Chim. Acta, 1999, 400: 91–108.

    Article  CAS  Google Scholar 

  5. Armstrong, F. A., Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions, J. Chem. Soc, Dalton Trans., 2002: 661–671.

  6. Aguey-Zinsou, K. F., Bernhardt, P. V., Kappler, U. et al., Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. Chem. Soc., 2003, 125: 530–535.

    Article  CAS  Google Scholar 

  7. Elliott, S. J., McElhaney, A. E., Feng, C. et al., A voltammetric study of interdomain electron transfer within sulfite oxidase, J. Am. Chem. Soc., 2002, 124: 11612–11613.

    Article  CAS  Google Scholar 

  8. Willner, I., Katz, E., Integration of layered redox proteins and conductive supports for bioelectronic applications, Angew. Chem. Int. Ed., 2000, 39: 1180–1218.

    Article  Google Scholar 

  9. Dong Shaojun, Che Guangli, Xie Yuanwu, Chemically Modified Electrode, 2nd Edition, Beijing: Science Press, 2003, 456–570.

    Google Scholar 

  10. Hecht, H. J., Kalisz, H. M., Hendle, J. et al., Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution, J. Mol. Biol., 1993, 229: 153–172.

    Article  CAS  Google Scholar 

  11. Chen, X., Hu, Y., Wilson, G. S., Glucose microbiosensor based on alumina sol-gel matrix/el ectropolymerized composit membrane, Biosens. Bioelectron., 2002, 17: 1005–1013.

    Article  CAS  Google Scholar 

  12. Niu, J., Lee, J. Y., Reagentless mediated biosensors based on polyelectrolyte and sol-gel derived silica matrix, Sens. Actuators B, 2002, 82: 250–258.

    Article  Google Scholar 

  13. Zhu, L., Li, Y., Tian, F. et al., Eletrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor, Sens. Actuators B, 2002, 84: 265–270.

    Article  Google Scholar 

  14. Chen, X., Dong, S., Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor, Biosens. Bioelectron., 2003, 18:999–1004.

    Article  CAS  Google Scholar 

  15. Xu, J. J., Yu, Z. H., Chen, H. Y, Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion, Anal. Chim. Acta, 2002, 463: 239–247.

    Article  CAS  Google Scholar 

  16. Reiter, S., Habermüller, K., Schuhmann, W., A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films, Sens. Actuators B, 2001, 79: 150–156.

    Article  Google Scholar 

  17. Piro, B., Dang, L. A., Pham, M. C. et al., A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT), J. Electroanal. Chem., 2001, 512: 101–109.

    Article  CAS  Google Scholar 

  18. Garjonyte, R., Malinauskas, A., Amperometric glucose biosensors based on Prussian blue- and polyaniline-glucose oxidase modified electrodes, Biosens Bioelectron., 2000, 15:445–451.

    Article  CAS  Google Scholar 

  19. Xiao, Y., Patolsky, F., Katz, E. et al., “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle, Science, 2003,299: 1877–1881.

    Article  CAS  Google Scholar 

  20. Azamian, B. R., Davis, J. J., Coleman, K. S. et al., Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc, 2002, 124: 12664–12665.

    Article  CAS  Google Scholar 

  21. Jiang, L., McNeil, J., Cooper, J. M., Direct electron transfer reaction of glucose oxidase immobilized at a self-assembled monolayer, J. Chem. Soc., Chem. Commun., 1995: 1293–1295.

  22. Ban, K., Ueki, T., Tamada, Y. et al., Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface, Anal. Chem., 2003, 75: 910–917.

    Article  CAS  Google Scholar 

  23. Ianniello, R. M., Lindsay, T. J., Yacynych, A. M., Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes, Anal. Chem., 1982,54: 1098–1101.

    Article  CAS  Google Scholar 

  24. Narasimhan, K., Wingard, L. B. Jr., Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode, Anal. Chem., 1986, 58: 2984–2987.

    Article  CAS  Google Scholar 

  25. Wightman, R. M., Wipf, D. O., Voltammetry at ultramicroelectrodes, in Electroanalytical Chemistry (ed. Bard, A. J.), New York: Marcel Dekker, 1989, Vol. 15, 267.

    Google Scholar 

  26. Scheller, F., Strand, G., Neumann, B. et al., Polarographic reduction of the prosthetic in flavoproteins, Bio electrochem. Bioenerg., 1979, 6: 117–122.

    Article  CAS  Google Scholar 

  27. Bard, A. J., Faulkner, L. R., Electrochemical Methods, Fundamental and Applications, 2nd ed., New York: John Wiley & Sons Inc., 2001,594.

    Google Scholar 

  28. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, 101: 19–28.

    Article  CAS  Google Scholar 

  29. Chen, J., Hamon, M. A., Hu, H. et al., Solution properties of single-walled carbon nanotubes, Science, 1998, 282: 95–98.

    Article  CAS  Google Scholar 

  30. Luo, H., Shi, Z., Li, N. et al., Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem., 2001, 73: 915–920.

    Article  CAS  Google Scholar 

  31. Wang, J., Li, M., Shi, Z. et al., Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem., 2002, 74: 1993–1997.

    Article  CAS  Google Scholar 

  32. Wang, Z., Liang, Q., Wang, Y. et al., Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid, J. Electroanal. Chem., 2003, 540:129–134.

    Article  CAS  Google Scholar 

  33. Musameh, M., Wang, J., Merkoci, A. et al., Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun., 2002, 4: 743–746.

    Article  CAS  Google Scholar 

  34. Chi, Q., Zhang, J., Dong, S. et al., Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes, Electrochim. Acta, 1994, 39: 2431–2438.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxin Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Chen, J. & Lu, T. Direct electron transfer of glucose oxidase on the carbon nanotube electrode. Sc. China Ser. B-Chem. 47, 113–119 (2004). https://doi.org/10.1360/03yb0148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03yb0148

Keywords

Navigation