Skip to main content
Log in

A novel theoretical model for mass transfer of hollow fiber hemodialyzers

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

A novel theoretical model for mass transfer of hollow fiber bundles in hemodialyzers is presented. In the model, a hemodialyzer is considered as a porous zone which is composed of two non-interpenetrating porous flow zones. Firstly, the dialysate side (shell side) is thought as a porous medium zone. Then by solidifying the dialysate flow zone and the occupied zone by hollow fiber membrane, the rest zone of hemodialyzer (i.e. blood side or lumen side) is considered as a porous medium zone too. Finally, the interface of the two flow zones is the fiber membrane through which mass transfer is performed. The dialysate and blood flows are all described by Navier-Stokes equations with Darcy momentum source terms. Kedem-Katchalsky equations as other source terms are added into Navier-Stokes equations to simulate the permeating flux through the membrane. All equations must be coupled together in the process of computing. The model is validated by the experimental data in literature. The simulative results show that the predicted clearances agree well with the experimental data, and the model in this paper is better than other models for the forecast of clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Junfen, Wang Qingrui, Research of membrane in application to new artificial organs, Synthetic Fiber in China, 2002, 31(3): 18–21.

    Google Scholar 

  2. Zhang Guoliang, Zhang Gang, Zhang Fengbao et al., Study on mass transfer characteristics of combined hemodialysis-hemoperfusion system, Chinese Journal of Biomedical Engineering, 2001, 20(5): 467–472.

    Google Scholar 

  3. Chang, Y. L., Lee, C. J., Solute transport characteristics in hemodiafiltration, J. Membr. Sci., 1988, 39: 99–111.

    Article  Google Scholar 

  4. Jaffrin, M., Ding, L., Laurent, J., Simultaneous convective and diffusive mass transfers in a hemodialyzer, J. Biomech. Eng., 1990, 112: 212–219.

    Article  Google Scholar 

  5. Wüpper, A., Woermann, D., Dellanna, F. et al., Retrofilration rates in high-flux fiber hemodialyzers: Analysis of clinical data, J. Membr, Sci., 1996, 121: 109–116.

    Article  Google Scholar 

  6. Wüpper, A., Dellanna, F., Baldamus, C. A. et al., Local transport processes in high-flux hollow fiber dialyzers, J. Membr. Sci., 1997, 131: 181–193.

    Article  Google Scholar 

  7. Legallais, C., Catapano, G., Harten, B. et al., A theoretical model to predict the in vitro performance of hemodialfilters, J. Membr. Sci., 2000, 168: 3–15.

    Article  Google Scholar 

  8. Gostoli, C., Gatta, A., Mass transfer in a hollow fiber dialyzer, J. Membr. Sci., 1980, 6: 133–148.

    Article  Google Scholar 

  9. Chen, V., Hlavacek, M., Application of Voronoi tessellation for modeling randomly packed hollow-fiber bundles, AIChE J., 1994, 40: 606–612.

    Article  Google Scholar 

  10. Rogers, J. D., Long, R. L., Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions, J. Membr. Sci., 1997, 134: 1–17.

    Article  Google Scholar 

  11. Bao, L., Liu, B., Lipscomb, G., Entry mass transfer in axial flows through randomly packed fiber bundles, AIChE J., 1999, 45: 2346–2356.

    Article  Google Scholar 

  12. Lemanski, J., Lipscomb, G., Effect of shell-side flows on hollow-fiber membrane device performance, AIChE J., 1995, 41: 2322–2326.

    Article  Google Scholar 

  13. Liao, Z. J., Numerical and experimental studies of mass transfer in hemodialyzer and hemodialysis, Ph. D Dissertation, University of Kentucky, USA, 2002.

  14. Jaffrin, M., Convective mass transfer in hemodialysis, Artif Organs, 1995, 19: 1162–1171.

    Article  Google Scholar 

  15. Sadiq, T. A. K., Advani, S. G., Parnas, R. S., Experimental investigation of transverse flow through aligned cylinders, Int. J. Multiphase Flow, 1995, 21: 755–774.

    Article  Google Scholar 

  16. Osuga, T., Obata, T., Ikehira, H. et al., Dialysate pressure isobars in a hollow-fiber dialyzer determined from magnetic resonance imaging and numerical simulation of dialysate flow, Artif Organs, 1998, 22: 907–909.

    Article  Google Scholar 

  17. Peter, D., Cakl, J., Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes, J. Membr. Sci., 1998, 149: 171–179.

    Article  Google Scholar 

  18. Skartsis, L., Khomami, B., Kardos, J., Resin flow through fiber beds during composite manufacturing process, Poly Eng. Sci., 1992, 32: 221–239.

    Article  Google Scholar 

  19. Labecki, M., Bruce, D. B., James, M. P., Two-dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors, Chem. Eng. Sci., 1996, 51: 4197–4213.

    Article  Google Scholar 

  20. Lemanski, J., Lipscomb, G., Effect of shell-side flows on the performance of hollow-fiber gas separation modules, J. Membr. Sci., 2001, 195: 215–228.

    Article  Google Scholar 

  21. Kedem, O., Katchalsky, A., Thermodynamics analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 1958, 27: 229–246.

    Article  Google Scholar 

  22. Wendt, R. P., Klein, E., Bresler, E. H. et al., Sieving properties of hemodialysis membranes, J. Membr. Sci., 1979, 5: 23–49.

    Article  Google Scholar 

  23. Zhang, J., Parker, D., Leypoldt, J. K., Flow distribution in hollow fiber hemodialysis using magnetic resonance Fourier velocity imaging, ASAIO J., 1995, 41: 678–682.

    Article  Google Scholar 

  24. Frank, A., Lipscomb, G., Dennis, M., Visualization of concentration fields in hemodialyzers by computed tomography, J. Membr. Sci., 2000, 175: 239–251.

    Article  Google Scholar 

  25. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publishing Co., 1980.

    Google Scholar 

  26. Sargent, J. A., Gotch, F. A., Principles and biophysics of dialysis, Replacement of renal function by dialysis (eds. Drukker, W., Parsons, F. M., Maher, J. F.), Martinus Nijhoff Medical Division, The Hague: 1978, 38–68.

    Google Scholar 

  27. Peter, A. H., Churn, K. P., Liao, Z. J. et al., The use of magnetic resonance imaging to measure the local ultrafiltration rate in hemodialyzers, J. Membr. Sci., 2002, 204: 195–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Gao.

About this article

Cite this article

Ding, W., He, L., Zhao, G. et al. A novel theoretical model for mass transfer of hollow fiber hemodialyzers. Chin.Sci.Bull. 48, 2386–2390 (2003). https://doi.org/10.1360/03we0014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03we0014

Keywords

Navigation