Advertisement

Chinese Science Bulletin

, Volume 48, Issue 23, pp 2621–2625 | Cite as

Preparation, characterization and preliminary in vivo studies of inactivated SARS-CoV vaccine

  • Lin Tang
  • Jian WangEmail author
  • Ede Qin
  • Qingyu Zhu
  • Man Yu
  • Zhifen Ding
  • Huiying Shi
  • Xiaojie Cheng
  • Caiping Wang
  • Guohui Chang
  • Shuangli Li
  • Xumin Zhang
  • Xishu Chen
  • Jun Yu
  • Ze ChenEmail author
Reports
  • 17 Downloads

Abstract

A large quantity of SARS-CoV virus was proliferated in Vero cells, inactivated with β-propiolactone, then purified by Sepharose 4FF column chromatography to prepare inactivated vaccine. The vaccine was identified by Western blot, mass spectrographic analysis, ELISA and electron microscopy. The vaccine with or without aluminum hydroxide adjuvant was inoculated into female BALB/c mice at different dosages. The result showed that the antibodies to SARS-CoV were induced in the mice. The antibody levels induced by the vaccine with aluminum hydroxide were higher than those without aluminum hydroxide.

Keywords

SARS coronavirus inactivated vaccine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rota, P. A., Oberste, M. S., Monroe, S. S. et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, 2003, 300(5624): 1394–1399.CrossRefGoogle Scholar
  2. 2.
    Ruef, C., SARS — a fast moving infectious disease, Infection, 2003, 31(3): 135.Google Scholar
  3. 3.
    Dye, C., Gay, N., Epidemiology. Modeling the SARS epidemic, Science, 2003, 300(5627): 1884–1885.CrossRefGoogle Scholar
  4. 4.
    Enserink, M., SARS in China. The big question now: will it be back? Science, 2003, 301(5631): 299.CrossRefGoogle Scholar
  5. 5.
    Pearson, H., Clarke, T., Abbott, A. et al., SARS: what have we learned? Nature, 2003, 424(6945): 121–126.CrossRefGoogle Scholar
  6. 6.
    Steinhoff, M. C., Viral vaccines for the prevention of childhood pneumonia in developing nations: priorities and prospects, Rev. Infect Dis., 1991, 13(Suppl. 6): S562–570.Google Scholar
  7. 7.
    Lieu, T. A., Thompson, K. M., Prosser, L. A. et al., Emerging issues in vaccine economics: perspectives from the USA, Expert Rev. Vaccines, 2002, 1(4): 433–442.CrossRefGoogle Scholar
  8. 8.
    Rappuoli, R., Miller, H. I., Falkow, S., Medicine. The intangible value of vaccination, Science, 2002, 297(5583): 937–939.CrossRefGoogle Scholar
  9. 9.
    Batson, A., Sustainable introduction of affordable new vaccines: the targeting strategy, Vaccine, 1998, Suppl: S93–98.Google Scholar
  10. 10.
    Qin, E. D., Zhu, Q. Y., Yu, M. et al., A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01), Chinese Science Bulletin, 2003, 48(10): 941–948.CrossRefGoogle Scholar
  11. 11.
    Chen, Z., Sahashi, Y., Matsuo, K. et al., Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza, Vaccine, 16(16): 1544–1549.Google Scholar
  12. 12.
    Chen, Z., Kadowaki, S., Hagiwara, Y. et al., Protection against influenza B virus infection by immunization with DNA vaccines, Vaccine, 2001, 19(11–12): 1446–1455.CrossRefGoogle Scholar
  13. 13.
    Budowsky, E. I., Friedman, E. A., Zheleznova, N. V., Principles of selective inactivation of viral genome. VII. Some peculiarities in determination of viral suspension infectivity during inactivation by chemical agents, Vaccine, 1991, 9(7): 473–476.CrossRefGoogle Scholar
  14. 14.
    Budowsky, E. I., Smirnov, Y. A., Shenderovich, S. F., Principles of selective inactivation of viral genome. VII. The influence of beta-propiolactone on immunogenic and protective activities of influenza virus, Vaccine, 1993, 11(3): 343–348.CrossRefGoogle Scholar
  15. 15.
    Smith, A. L., De Souza, M. S., Finzi, D. et al., Responses of mice to murine coronavirus immunization, Arch Virol, 1992, 125(1–4): 39–52.CrossRefGoogle Scholar
  16. 16.
    Stephan, W., Dichtelmuller, H., Prince, A. M. et al., Inactivation of the Hutchinson strain of hepatitis non-A, non-B virus in intravenous immunoglobulin by beta-propiolactone, J. Med. Virol., 1988, 26(3): 227–232.CrossRefGoogle Scholar
  17. 17.
    Gupta, R. K., Relyveld, E. H., Lindblad, E. B. et al., Adjuvants-a balance between toxicity and adjuvanticity, Vaccine, 1993, 11(3): 293–300.CrossRefGoogle Scholar
  18. 18.
    Clements, C. J., Griffiths, E., The global impact of vaccines containing aluminium adjuvants, Vaccine, 2002, 20 (Suppl. 3): S24-S33.CrossRefGoogle Scholar
  19. 19.
    Theodore, C. E., Martin, M., Workshop summary: Aluminum in vaccines, Vaccine, 2002, 20 (Suppl. 3): S1-S4.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Lin Tang
    • 1
  • Jian Wang
    • 1
    Email author
  • Ede Qin
    • 2
  • Qingyu Zhu
    • 2
  • Man Yu
    • 2
  • Zhifen Ding
    • 3
  • Huiying Shi
    • 3
  • Xiaojie Cheng
    • 1
  • Caiping Wang
    • 1
  • Guohui Chang
    • 2
  • Shuangli Li
  • Xumin Zhang
    • 1
  • Xishu Chen
    • 1
  • Jun Yu
    • 1
  • Ze Chen
    • 4
    • 5
    Email author
  1. 1.Beijing Genomics InstituteChinese Academy of SciencesBeijingChina
  2. 2.Institute of Microbiology and EpidemiologyAcademy of Military MedicineBeijingChina
  3. 3.National Vaccine and Serum InstituteBeijingChina
  4. 4.Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  5. 5.College of Life ScienceHunan Normal UniversityChangshaChina

Personalised recommendations