Skip to main content
Log in

Heterogeneous reactions on the surface of fine particles in the atmosphere

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Fine particles play an important role in the atmosphere. Research on heterogeneous reactions on the surface of fine particles is one of the frontier areas of atmospheric science. In this paper, physical and chemical characteristics of fine particles in the atmosphere and the interactions between trace gases and fine particles are described, methods used in heterogeneous reactions research are discussed in detail, progress in the study of heterogeneous reactions on the surface of fine particles in the atmosphere is summarized, existing important questions are pointed out and future research directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravishankara, A. R., Heterogeneous and multiphase chemistry in the troposphere, Science, 1997, 276: 1058–1065.

    Article  Google Scholar 

  2. Finlayson, B. J., Hemminger, J. C., Physical chemistry of airborne sea salt particles and their components, J. Phys. Chem., 2000, 104: 11463–11477.

    Google Scholar 

  3. De Haan, D. O., Brauers, T. D., Finlayson-Pitts, B. J., Heterogeneous chemistry in troposphere: experimental approaches and applications to the chemistry of sea salt particles, Int. Rev. Phys. Chem., 1999, 18: 343–385.

    Article  Google Scholar 

  4. Zhang Renjian, Wang Minxing, Zhang Wen et al., Analysis of chemical compositions of aerosol in spring and winter in Beijing, Climate and Environment Research (in Chinese), 2000, 5(1): 6–12.

    Google Scholar 

  5. Xie Yi, Wang Gengchen, Ren Lixin et al., Investigation of chemical compositions of fine particles in Beijing, Chinese Environmental Sciences (in Chinese), 2001, 21(5): 432–435

    Google Scholar 

  6. Chow, J. C., Watson, J. G., Fujita, E. M. et al., Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air quality study, Atmospheric Environment, 1994, 28: 2061–2080.

    Article  Google Scholar 

  7. Saxena, P., Hildemann, L., Water-soluble organic in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, Journal of atmospheric chemistry, 1996, 24: 57–109.

    Article  Google Scholar 

  8. Xu Shiyu, Hu Min, Progress in studying water-soluble organic compounds in aerosols, Research of Environmental Sciences, 2000, 13(1): 50–53.

    Google Scholar 

  9. Schurath, U., Naumann, K. H., Heterogeneous process involving atmospheric particulate matter, Pure & Appl. Chem., 1998, 70(7): 1353–1361.

    Article  Google Scholar 

  10. Underwood, G. M., Li, P., Usher, C. R. et al., Determining Accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces with a Knudsen cell reactor, J. Phys. Chem. A, 2000, 104(4): 819–829.

    Article  Google Scholar 

  11. Leu, M. T., Timonen, R. S., Keyser, L. F. et al., Heterogeneous reactions of HNO3(g) + NaCl(s) → HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) → ClNO2(g) + NaNO3(s), J. Phys. Chem., 1995, 99: 13203–13212.

    Article  Google Scholar 

  12. Robinson, G. N., Worsnop, D. R., Jayne, J. T. et al., heterogeneous uptake of HCl by sulfuric acid solution, J. Geophys. Res., 1998, 103: 25371–25381.

    Article  Google Scholar 

  13. Swartz, E., Boniface, J., Tchertkov, I. et al., Horizontal bubble train apparatus for heterogeneous chemistry studies: uptake of gas-phase formaldehyde, Environ. Sci. Technol., 1997, 31: 2634–2641.

    Article  Google Scholar 

  14. Bongartz, A., Kames, J., Schurath, U., experimental determination of HONO mass accommodation coefficients using two different techniques, J. Atmos. Chem., 1994, 18: 149–169.

    Article  Google Scholar 

  15. Kirchner, U., Scheer, V., Vogt, R., FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO2 and HNO3 with soot, J. Phys. Chem., A 2000, 104: 8908–8915.

    Article  Google Scholar 

  16. Vogt, R., Finlayson-Pitts, B. J., A diffuse reflectance infrared Fouier transform spectroscopy (DRIFTS) study of the surface reaction of NaCl with gaseous NO2 and HNO3, J. Phys. Chem., 1994, 98: 3747–3755.

    Article  Google Scholar 

  17. Prather, K. A., Nordmeyer, T., Salt, K., Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry, Analytical Chemistry, 1994, 66: 1403–1407.

    Article  Google Scholar 

  18. Ro, C. U., Osan, J., Van Grieken, R., Determination of low-Z elements in individual environmental particles using windowless EPMA, Anal. Chem., 1999, 71: 1521–1528.

    Article  Google Scholar 

  19. Hemminger, J. C., Heterogeneous chemistry in the troposphere: A modern surface chemistry approach to the study of fundamental processes, Int. Rev. Phys. Chem., 1999, 18: 387–417.

    Article  Google Scholar 

  20. Colussi, A. J., Amorebieta, V. T., Arrested formation of carbon oxides in programmed oxidation of methane on nonstoichiometric samaria, J. Phys. Chem., 1995, 99: 13921–13925.

    Article  Google Scholar 

  21. Underwood, G. M., Li, P., Al-Abandleh, H. et al., A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles, J. Phys. Chem. A, 2001, 105: 6606–6620.

    Article  Google Scholar 

  22. Keyer, L. F., Moore, S. B., Leu, M.-T., Surface reaction and pore diffusion in flow-tube reactor, J. Phys. Chem., 1991, 95: 5496–5502.

    Article  Google Scholar 

  23. Hind A. Al-Abadleh, Grassian, V. H., Heterogeneous reaction of NO2 on Hexane soot: A Knudsen cell and FT-IR study, J. Phys. Chem., A 2000, 104: 11926–11933.

    Article  Google Scholar 

  24. Ward, D. A., Ko, E. I., One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids, J. Catal., 1994, 150: 18–33.

    Article  Google Scholar 

  25. Gustavo Larson, Edgar Lotero, Parra, R. D. et al., Characterization of palladium supported on sulfated zirconia catalysts by DRIFTS, XPS and n-butane isomerization reaction in the presence of hydrogen, Appl. Catal., 1995, 130: 213–226.

    Article  Google Scholar 

  26. Binghui Li, Richard, D. G., Design and construction of a DRIFTS accessory and an in situ heatable sample cell, Spectroscopic Techniques, 1998, 52(11): 1488–1491.

    Google Scholar 

  27. Nathan, C. C., Peter, R. G., Role of scattering coefficients in extended near-infrared diffuse reflection spectrometry, Applied Spectroscopy, 1998, 52(2): 218–221.

    Article  Google Scholar 

  28. Juergen Schmitt, Hans-Curt Flemming, FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, 1998, 41: 1–11.

    Article  Google Scholar 

  29. Daizhou Zhang, Guang-Yu Shi, Yasunobu Iwasaka et al., Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao (36°04′N, 120°21′E), China, Atmospheric Environment, 2000, 34: 2669–2679.

    Article  Google Scholar 

  30. Daizhou Zhang, Yasunobu Iwasaka, Chloride deposition on dust particles in marine atmosphere, Geophysical Research Letters, 2001, 28(18): 3613–3616.

    Article  Google Scholar 

  31. Michaela Kendall, Bemie M. Hutton, Terry, D. Tetly et al., Investigation of fine atmospheric particle surface and lung lining fluid interaction using XPS, Applied Surface Science, 2001, 178: 27–36.

    Article  Google Scholar 

  32. Sutapa Ghosal, John C. Hemminger, Effect of water on the HNO3 pressure dependence of the reaction between gas-phase HNO3 and NaCl surfaces, J. Phys. Chem., A 1999, 103(25): 4777–4781.

    Article  Google Scholar 

  33. Lin Wang, Feng Zhang, Jianmin Chen, Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles, Environmental Science and Technology, 2001, 35: 2543–2547.

    Article  Google Scholar 

  34. Eric, E. Gard, Michael, J. Kleeman, Deborah, S. Gross et al., Direct observation of heterogeneous chemistry in the atmosphere, Science, 1998, 279: 1184–1187.

    Article  Google Scholar 

  35. Philip, J. Silva, Richard, A. Carlin, Kimberly, A., Prather, Single particle analysis of suspended soil dust from Southern California, Atmospheric Environment, 2000, 34: 1811–1820.

    Article  Google Scholar 

  36. Kamm, S., Mohler, O., Naumann, K. H. et al., The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ., 1999, 33: 4651–4661.

    Article  Google Scholar 

  37. Andreas Wahner, Thomas, F. Mentel, Martin Sohn et al., Heterogeneous reaction of N2O5 on sodium nitrate aerosol, Journal of Geophysical Research, 1998, 103(D23): 31103–31112.

    Article  Google Scholar 

  38. David, D. Weis, George, E. Ewing, The reaction of nitrogen dioxide with sea salt aerosol, J. Phys. Chem. A, 1999, 103: 4865–4873.

    Article  Google Scholar 

  39. Frederick, F. Fenter, Franciois Caloz, Michel, J. Rossi, Heteroge-neous kinetics of N2O5 uptake on Salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3), J. Phys. Chem., 1996(100): 1008–1019.

  40. Zhu, T., Yarwood, G., Chen, J. et al., Evidence for the heterogeneous formation of nitrous acid (HONO) from peroxynitric acid (HO2NO2) in environmental chambers, Environ. Sci. & Technol., 1993, 27: 982–983.

    Article  Google Scholar 

  41. Goodman, A. L., Underwood, G. M., Grassian, V. H., Heterogeneous reaction of NO2: Characterization of gas-phase and adsorbed products from the reaction 2NO2(g) +H2O(a) → HONO(g) +HNO3(a) on hydrated silica particles, J. Phys. Chem., A 1999, 103(36): 7217–7223.

    Article  Google Scholar 

  42. Kleffmann, J., Becker, K. H., Wiesen, P., Investigation of the heterogeneous NO2 conversion on perchloride acid surface, J. Chem. Society-Faraday Transactions, 1998, 94: 3289–3292.

    Article  Google Scholar 

  43. Najat, A. Saliba, Michihiro Mochida, Barbara, J. Finlayson-Pitts, Laboratory Studies of Sources of HONO in Polluted Urban Atmospheres, Geophysical Research Letters, 2000, 27(19): 3229–3232.

    Article  Google Scholar 

  44. Michihiro Mochida, Barbara, J. Finlayson-Pitts, FTIR studies of the reaction of gaseous NO with HNO3 on porous glass: Implications for conversion of HNO3 to photochemically active NOx in the atmosphere, J. Phys. Chem., A 2000(104): 9705–9711.

  45. Smith, D. M., Welch, W. F., Graham, S. M. et al., Reaction of nitrogen oxides with black carbon: an FT-IR study, Applied Spectroscopy, 1988, 42(4): 674–679.

    Article  Google Scholar 

  46. Dentener, F. J., Crutzen, P. J., Reaction of N2O5 on Tropospheric Aerosols: Impact on the global distributions of NOx, O3 and OH, J. Geophys. Res., 1993, 98(D4): 7149–7163.

    Article  Google Scholar 

  47. Dentener, F. J., Carmichael, G., Zhang, Y. et al., Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 1996, 101(D17): 22869–22889.

    Article  Google Scholar 

  48. Mamane, Y., Gottlieb, J., J. Aerosol Sci., 1990, 21: S225.

    Article  Google Scholar 

  49. Underwood, G. M., Miller, T. M., Grassian, V. H., Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles, J. Phys. Chem., A 1999, 103: 6184–6190.

    Article  Google Scholar 

  50. Hanisch, F., Crowley, J. N., Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: a Knudsen cell study, J. Phys. Chem., A 2001, 105(13): 3096–3106.

    Article  Google Scholar 

  51. Smith, D. M., Chughtai, A. R., Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations, J. Atmos. Chem., 1997, 26: 77–91.

    Article  Google Scholar 

  52. Smith, D. M., Chughtai, A. R., Reaction kinetics of ozone at low concentrations with n-hexane soot, J. Geophys. Res., 1996, 101(D14): 19607–19620.

    Article  Google Scholar 

  53. Fendel, W., Matter, D., Burtscher, H. et al., Interaction between carbon or iron aerosol particles and ozone, Atmos. Environ., 1995, 29: 967–973.

    Article  Google Scholar 

  54. Gao, R. S., Kaurcher, B., Keim, E. R. et al., Constraining the heterogeneous loss of O3 on soot particles with observations in jet engine exhaust plumes, Geophysical Research Letters, 1998, 25: 3323–3326.

    Article  Google Scholar 

  55. Il’in, S. D., Selikhanovich, V. V., Gershenzon, Yu M. et al., Study of heterogeneous ozone loss on materials typical of atmospheric aerosol species, Soviet Journal of Chemical Physics, 1991, 8: 1858–1880.

    Google Scholar 

  56. Rogaski, C. A., Golden, D. M., Williams, L. R., Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4, Geophysical Research Letters, 1997, 24: 381–384.

    Article  Google Scholar 

  57. Mu Yujing, Liu Ye, Yang Wenxiang, The sticking coefficients of ozone on ice and doped ice, Journal of Environmental Sciences, 2000, 20(4): 410–414.

    Google Scholar 

  58. Akhter, M. S., Chughtai, A. R., and Smith, D. M., Spectroscopic studies of oxidized soots, Appl. Spectrosc, 1991, 45: 653–665.

    Article  Google Scholar 

  59. Smith, D. M., Chughtai, A. R., The surface structure and reactivity of black carbon, Colloids Surface, 1995, 105: 47–77.

    Article  Google Scholar 

  60. Birgit, G., Victoria, T. Nicholson, Henry Roe et al., A Fourier transform infrared study of the adsorption of SO2 on n-hexane soot from −130°C – −40°C, J. Geophys. Res., 1999, 104(D5): 5507–5514.

    Article  Google Scholar 

  61. Clegg, S. M., Abbatt, J. P. D., Uptake of gas-phase SO2 and H2O2 by ice surface: dependence on partial pressure, temperature, and surface acidity, J. Phys. Chem., A 2001, 105: 6630–6636.

    Article  Google Scholar 

  62. Goodman, A. L., Li, P., Usher, C. R. et al., Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles, J. Phys. Chem., A 2001, 105: 6109–6120.

    Article  Google Scholar 

  63. Turpin, B. J., Saxena, P., Andrews, E., Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmospheric Environment, 2000, 34: 2983–3013.

    Article  Google Scholar 

  64. Huang Cuiling, Xu Wenqing, Zhao Guodong et al., Components of PAHs in particles in atmosphere in Beijing, Environmental Sciences (in Chinese), 2001, 22(4): 16–20.

    Google Scholar 

  65. Carlos-Cuellar, S., Li, P., Christensen, A. P. et al., Heterogeneous Uptake Kinetics of Volatile Organic Compounds on Oxide Surfaces Using a Knudsen Cell Reactor: Adsorption of Acetic Acid, Formaldehyde, and Methanol on α-Fe2O3, α-Al2O3, and SiO2, J. Phys. Chem. A, 2003, 107: 4250–4261.

    Article  Google Scholar 

  66. Inazu, K., Kobayashi, T., Hisamatsu, Y., Formation of 2-nitrofluoranthene in gas-solid heterogeneous photoreaction of fluoranthene supported on oxides particles in the presence of nitrogen dioxide, Chemosphere, 1997, 35: 607–622.

    Article  Google Scholar 

  67. Palm, W. U., Elend, M., Krueger, H. U. et al., OH Radical reactivity of airborne terbuthylazine adsorbed on inert aerosol, Environ. Sci. Technol., 1997, 31: 3389–3396.

    Article  Google Scholar 

  68. Menon, S., Hansen, J., Nazarenko, L. et al., Climate effects of blank carbon aerosols in China and India, Science, 2002, 297: 2250–2253.

    Article  Google Scholar 

  69. Phadnis, M., Carmichael, G. R., Numerical investigation of the influence of mineral dust on the tropospheric chemistry of East Asia, J. Atmos. Chem., 2000, 36: 285–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhu.

About this article

Cite this article

Ding, J., Zhu, T. Heterogeneous reactions on the surface of fine particles in the atmosphere. Chin.Sci.Bull. 48, 2267–2276 (2003). https://doi.org/10.1360/03wb0046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/03wb0046

Keywords

Navigation