Skip to main content
Log in

Full-potential LMTO study on the electronic structure of heavy-fermion compound LiV2O4

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The electronic structure of heavy fermion compound LiV2O4 has been calculated using a self-consistent full-potential LMTO method. The results show that the conduction bands in this compound are formed from V 3 d states with a bandwidth of 2.5 eV. The symmetric characteristics of conduction bands are of t2g in principle. The energy gap between conduction bands and fully occupied oxygen 2p bands is 1.9 eV. The band dispersions near Fermi energy display complicated structures. Furthermore, the N( EF) and ycal are 11.1 (states/eV/f.u.) and 26.7 mJ/mol.K2 determined numerically by LDA calculation, respectively. It is insufficient to clarify the origin of local moment in LiV2O4 from plain LDA calculations. In addition to the above LDA calculation, we also found a LSDA solution of LiV2O4 that is lower in total energy than that of LDA calculation. Similarly, LSDA + GGA calculation yields almost the identical result as that in LSDA. We conclude that the mechanism responsible for heavy fermion properties in LiV2O4 might be somewhat different from the plain Kondo mechanism in conventional 4f and 5f heavy fermion compounds and perhaps the quantum transition might play an adequate role in heavy-ferrnion behaviors in LiV2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondo, S., Johnston, D. C., Swenson, C. A. et al., LiV2O4: a heavy fehon transition metal oxide, Phys. Rev. Lett., 1997, 78: 3729.

    Article  Google Scholar 

  2. Stewart, G. R., Fisk, Z., Willis, J. O. et al., Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3, Phys. Rev. Lett., 1984, 52: 579.

    Article  Google Scholar 

  3. Johnston, D. C., Superconducting and normal state properties of Li1+xTi2-xO4 spinel compounds (I)–Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility, J. Low. Temp. Phys., 1976, 25: 145.

    Article  Google Scholar 

  4. Urano, C., Nohara, M., Kondo, S. et a1., LiV2O4 spinel as a heavy-fermion liquid: anomalous transport and role of geometrical frustration, Phys. Rev. Lett., 2000, 85: 1052.

    Article  Google Scholar 

  5. Kondo, S., Johnston, D. C, Miller, L. L., Synthesis, characterization, and magnetic susceptibility of the heavy-fermion transition-metal oxide LiV2O4, Phys. Rev., 1999, B59: 2609.

    Google Scholar 

  6. Johnston, D. C., Swenson, C. A., Kondo, S., Specific heat (1.2–108 K) and thermal expansion (4.4–297 K) measurements of the 3d heavy-fermion compound LiV2O4, Phys. Rev., 1999, B59: 2627.

    Google Scholar 

  7. Eyert, V., Hsck, K. -H., Horn, S. et al., Electronic structure and magnetic interactions in LiV2O4, Europhys. Lett., 1999, 46: 762.

    Article  Google Scholar 

  8. Matsuno, J., Fujimori, A., Mattheiss, L. F., Electronic structure of spinel-type LiV2O4, Phys. Rev., 1999, B60: 1607.

    Google Scholar 

  9. Anisimov, V. I., Korotin, M. A., Zölfl, M. et al., Electronic structure of the heavy fermion metal LiV2O4, Phys. Rev. Lett., 1999, 83: 364.

    Article  Google Scholar 

  10. Anisimov, V. I., Zaanen, J., Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev., 1990, B44: 943.

    Google Scholar 

  11. Anisimov, V. I., Aryasetiawan, F., Liechtenstein, A. I., First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method, J. Phys. Condens. Matter, 1997, 9: 233.

    Google Scholar 

  12. Andersen, O. K., Linear methods in band theory, Phys. Rev., 1975, B12: 3060.

    Google Scholar 

  13. Vosko, S. H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, 58: 1200.

    Article  Google Scholar 

  14. Wigner, E., On the interaction of electrons in metals, Phys. Rev., 1934, 46: 1002.

    Article  MATH  Google Scholar 

  15. Hewson, A. C., The Kondo Problem to Heavy Femions, Cambridge: Cambridge University Press, 1993.

    Google Scholar 

  16. Perdew, J. P., Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev., 1992, B45: 13244.

    Google Scholar 

  17. Perdew, J. P., Burke, K., Emzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77: 3865.

    Article  Google Scholar 

  18. Sqh, D. J., Planewaves, Pseudopotentials and the LAPW Method, Boston: Kluwer Academic Publishers, 1994.

    Google Scholar 

  19. Blaha, P., Schwan, K., Luitz, J., Computer Code Wien 97 (Vienna University of Technology, Vienna, 1997), Improved and updated of original code published by Blaha, P., Schwan, K., Sorantin, P., Trickey, S. B., Comput. Phys. Commun., 1990, 59: 399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiu Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M., Tao, X. & He, J. Full-potential LMTO study on the electronic structure of heavy-fermion compound LiV2O4 . Sci. China Ser. A-Math. 45, 802–807 (2002). https://doi.org/10.1360/02ys9088

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ys9088

Keywords

Navigation