Skip to main content
Log in

The Faddeev knots as stable solitons: Existence theorems

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The problem of existence of knot-like solitons as the energy-minimizing configurations in the Faddeev model, topologically characterized by an Hopf invariant, Q, is considered. It is proved that, in the full space situation, there exists an infinite set S of integers so that for any mS, the Faddeev energy, E, has a minimizer among the class Q = m; in the bounded domain situation, the same existence theorem holds when S is the set of all integers. One of the important technical results is that E and Q satisfy the sublinear inequality EC|Q|3/4, where C > 0 is a universal constant, which explains why knotted (clustered soliton) configurations are preferred over widely separated unknotted (multisoliton) configurations when |Q| is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M., The Geometry and Physics of Knots, Cambridge: Cambridge Univ. Press, 1990.

    Book  MATH  Google Scholar 

  2. Kauffman, L. H., Knots and Physics, River Ridge, New Jersey: World Scientific, 2000.

    Google Scholar 

  3. Finkelstein, D., Rubinstein, J., Connection between spin, statistics, and kinks, J. Math. Phys., 1968, 9: 1762–1779.

    Article  MathSciNet  MATH  Google Scholar 

  4. Jehle, H., Flux quantization and particle physics, Phys. Rev. D, 1972, 6: 441–457.

    Article  Google Scholar 

  5. Kibble, T. W. B., Some implications of a cosmological phase transition, Phys. Rep., 1980, 69: 183–199.

    Article  MathSciNet  Google Scholar 

  6. Kibble, T. W. B., Cosmic strings—An overview, in The Formation and Evolution of Cosmic Strings (eds. Gibbons, G., Hawking, S., Vachaspati, T.), Cambridge: Cambridge Univ. Press, 1990, 3–34.

    Google Scholar 

  7. Vilenkin, A., Cosmic strings and domain walls, Phys. Rep., 1985, 121: 263–315.

    Article  MathSciNet  MATH  Google Scholar 

  8. Vilenkin, A., Shellard, E. P. S., Cosmic Strings and Other Topological Defects, Cambridge: Cambridge Univ. Press, 1994.

    MATH  Google Scholar 

  9. Babaev, E., Dual neutral variables and knotted solitons in triplet superconductors, Phys. Rev. Lett., 2002, 88: 177002.

    Article  Google Scholar 

  10. Sumners, D. W., Lifting the curtain: Using topology to probe the hidden action of enzymes, Notices A. M. S, 1995, 42: 528–537.

    MathSciNet  MATH  Google Scholar 

  11. MacArthur, A., The entanglement structures of polymers, in Knots and Applications (ed. Kauffman, L. H.), Singapore: World Scientific, 1995, 395–426.

    Chapter  Google Scholar 

  12. Tait, P. G., Scientific Papers, Cambridge: Cambridge Univ. Press, 1900.

    Google Scholar 

  13. Alexander, J. W., Topological invariants of knots and links, Trans. A. M. S., 1928, 30: 275–306.

    Article  MATH  Google Scholar 

  14. Jones, V. F. R., A new knot polynomial and von Neumann algebras, Notices. A. M. S., 1986, 33: 219–225.

    Google Scholar 

  15. Jones, V. F. R., Hecke algebra representations of braid group and link polynomials, Ann. of Math., 1987, 126: 335–388.

    Article  MathSciNet  MATH  Google Scholar 

  16. Murasugi, K., Jones polynomials and classical conjectures in knot theory, Topology, 1987, 26: 187–194.

    Article  MathSciNet  MATH  Google Scholar 

  17. Murasugi, K., Knot Theory and Its Applications, Boston: Birkhäuser, 1996.

    MATH  Google Scholar 

  18. Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 1989, 121: 351–399.

    Article  MATH  Google Scholar 

  19. Vassiliev, V. A., Invariants of knots and complements of discriminants, in Developments in Mathematics: the Moscow School, London: Chapman & Hall, 1993, 194–250.

    Google Scholar 

  20. Faddeev, L., Niemi, A. J., Stable knot-like structures in classical field theory, Nature, 1997, 387: 58–61.

    Article  Google Scholar 

  21. Faddeev, L., Niemi, A. J., Toroidal configurations as stable solitons, Preprint, hep-th/9705176.

  22. Faddeev, L., Knotted solitons, Plenary Address, ICM2002, Beijing, 2002.

    Google Scholar 

  23. Faddeev, L., Einstein and several contemporary tendencies in the theory of elementary particles, in Relativity, Quanta, and Cosmology (eds. Pantaleo, M., de Finis, F.), Vol. 1, 1979, 247–266.

    Google Scholar 

  24. Battye, R. A., Sutcliffe, P. M., Knots as stable solutions in a three-dimensional classical field theory, Phys. Rev. Lett., 1998, 81: 4798–4801.

    Article  MathSciNet  MATH  Google Scholar 

  25. Battye, R. A., Sutcliffe, P. M., To be or knot to be? Phys. Rev. Lett., 1998, 81: 4798–4801.

    Article  MathSciNet  MATH  Google Scholar 

  26. Battye, R. A., Sutcliffe, P. M., Solitons, links and knots, Proc. Roy. Soc. A, 1999, 455: 4305- 4331.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hietarinta, J., Salo, P., Faddeev-Hopf knots: Dynamics of linked unknots, Phys. Lett. B, 1999, 451: 60–67.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, F., Yang, Y., Existence of energy minimizers as stable knotted solitons in the Faddeev model, Commun. Math. Phys., to appear.

  29. Skyrme, T. H. R., A nonlinear field theory, Proc. Roy. Soc. A, 1961, 260: 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  30. Skyrme, T. H. R., Particle states of a quantized meson field, Proc. Roy. Soc. A, 1961, 262: 237–245.

    Article  MathSciNet  MATH  Google Scholar 

  31. Skyrme, T. H. R., A unified field theory of mesons and baryons, Nucl. Phys., 1962, 31: 556–569.

    Article  MathSciNet  Google Scholar 

  32. Skyrme, T. H. R., The origins of Skyrmions, Internat. J. Mod. Phys. A, 1988, 3: 2745–2751.

    Article  MathSciNet  Google Scholar 

  33. Zahed, I., Brown, G. E., The Skyrme model, Phys. Reports, 1986, 142: 1–102.

    Article  MathSciNet  Google Scholar 

  34. Cho, Y. M., Monopoles and knots in Skyrme theory, Phys. Rev. Lett., 2001, 87: 252001.

    Article  Google Scholar 

  35. Vakulenko, A. F., Kapitanski, L. V., Stability of solitons in S2 nonlinear ?-model, Sov. Phys. Dokl., 1979, 24: 433–434.

    MATH  Google Scholar 

  36. Riviere, T., Minimizing fibrations and p-harmonic maps in homotopy classes from S3 to S2, Comm. Anal. Geom., 1998, 6: 427–483.

    MathSciNet  MATH  Google Scholar 

  37. Ward, R. S., Hopf solitons on S3 and R3, Nonlinearity, 1999, 12: 241–246.

    Article  MathSciNet  MATH  Google Scholar 

  38. Belavin, A. A., Polyakov, A. M., Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 1975, 22: 245–247.

    Google Scholar 

  39. Rajaraman, R., Solitons and Instantons, Amsterdam: North-Holland, 1982.

    MATH  Google Scholar 

  40. Jaffe, A., Taubes, C. H., Vortices and Monopoles, Boston: Birkhäuser, 1980.

    MATH  Google Scholar 

  41. Dunne, G., Self-Dual Chern-Simons Theories, Lecture Notes in Phys., vol. m 36, Berlin: Springer, 1995.

    Book  Google Scholar 

  42. Yang, Y., Solitons in Field Theory and Nonlinear Analysis, New York: Springer, 2001.

    Book  MATH  Google Scholar 

  43. Bogomol’nyi, E. B., The stability of classical solutions, Sov. J. Nucl. Phys., 1976, 24: 449–454.

    MathSciNet  Google Scholar 

  44. Prasad, M. K., Sommerfield, C. M., Exact classical solutions for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett., 1975, 35: 760–762.

    Article  Google Scholar 

  45. Taubes, C. H., The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on R3, Parts I, II, Commun. Math. Phys., 1982, 86: 257–320.

    Article  MathSciNet  MATH  Google Scholar 

  46. Esteban, M. J., A direct variational approach to Skyrme’s model for meson fields, Commun. Math. Phys., 1986, 105: 571–591.

    Article  MathSciNet  MATH  Google Scholar 

  47. Esteban, M. J., A new setting for Skyrme’s problem, in Variational Methods (eds. Berestycki, H., Coron, J. -M., Ekeland, I.), Boston: Birkhäuser, 1988, 77–93.

    Google Scholar 

  48. Rybakov, Y. P., Sanyuk, V. I., Methods for studying 3+1 localized structures: The Skyrmion as the absolute minimizer of energy, Internat. J. Mod. Phys. A, 1992, 7: 3235–3264.

    Article  MathSciNet  Google Scholar 

  49. Makhankov, V. G., Rybakov, Y. P., Sanyuk, V. I., The Skyrme Model, Berlin and Heidelberg: Springer, 1993.

    Book  Google Scholar 

  50. Aratyn, H., Ferreira, L. A., Zimerman, A. H., Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers, Phys. Rev. Lett., 1999, 83: 1723–1726.

    Article  Google Scholar 

  51. Husemoller, D., Fibre Bundles, 2nd ed., New York: Springer, 1975.

    MATH  Google Scholar 

  52. Hardt, R., Riviere, T., Connecting topological Hopf singularities, Preprint, Rice Univ., 2001.

  53. Tartar, L., Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV (ed. Knops, R. J.), London: Pitman, 1979, 136–212.

    Google Scholar 

  54. Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conference Series in Math. No. 74, A. M. S., Providence, 1990.

  55. Bethuel, F., Brezis, H., Helein, F., Ginzburg-Landau Vortices, Boston: Birkhäuser, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanghua Lin or Yisong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Yang, Y. The Faddeev knots as stable solitons: Existence theorems. Sci. China Ser. A-Math. 47, 187–197 (2004). https://doi.org/10.1360/02ys0351

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ys0351

Keywords

Navigation