Skip to main content
Log in

Magnetohydrodynamic study of electromagnetic separation of nonmetallic inclusions from aluminum melt

  • Published:
Science in China Series E: Technolgical Science Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic flow around the nonmetallic inclusions in aluminum melt and the force exerted on the inclusions were explored by dimensional analysis and numerical calculations. Dimensional analysis shows that the invariant \(A = {{JB\rho _f d_p^3 } \over {\mu _f^2 }}\) characterizes the force exerted on the inclusions and the flow intensity of the melt. The physical significance of A is represented as a modified particle Reynolds number that reflects the effects of electromagnetic force. The fluid flow around the particle becomes unstable when A>2×103. It is shown that the neglect of the inertial terms has little effect on the force exerted on the inclusions in the range of A≤1×106. However, the analytical solution of the maximum velocity inside the melt does not apply due to the appearance of turbulent flow in the case of A>2×103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laz, P. J., Hillberry, B. M., Fatigue life prediction from inclusion initiated cracks, Int. J. Fatigue, 1998, 20(4): 263–270.

    Article  Google Scholar 

  2. Liu, L., Samuel, F. H., Effect of inclusions on the tensile properties of Al-7% Si-0.35% Mg (A356.2) aluminium casting alloy, J. Mater. Sci., 1998, 33: 2269–2281.

    Article  Google Scholar 

  3. Mollard, F. R., Flemings, M. C., Niyama, E. F., Understanding aluminum fluidity: The key to advanced cast products, AFS Trans., 1987, 95: 647–652.

    Google Scholar 

  4. Laslaz, G., Laty, P., Gas porosity and metal cleanliness in aluminum casting alloys, AFS Trans., 1991, 99: 83–90.

    Google Scholar 

  5. Roy, N., Samuel, A. M., Samuel, F. H., Porosity formation in Al-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations, Metal. Mater. Trans. A, 1996, 27A: 415–429.

    Article  Google Scholar 

  6. Lewis, D. K., Can we control hard spot problems? Die Casting Engineer, 1987, 31(2): 34–38.

    Google Scholar 

  7. Frisvold, F., Engh, T. A., Johansen, S. T. et al. Removal of Inclusions — A Survey and Comparison of Principles in Light Metals (ed. Cutshall, E. R.), 1992, TMS, Warrendale, Pennsylvania, 1991: 1125–1132.

    Google Scholar 

  8. Shivkumar, S., Wang, L., Apelian, D., Molten metal processing of advanced cast aluminum alloys, JOM, 1991, 43(1): 26–32.

    Google Scholar 

  9. Fielding, R. A. P., The role of grain refining, degassing and filtration in the production of quality ingot products, Light Metal Age. 1996, (October): 46–59.

    Google Scholar 

  10. El-Kaddah, N., Patel, A. D., Natarajan, T. T., The electromagnetic filtration of molten aluminum using an induced-current separator, JOM, 1995, 47(5): 46–49.

    Google Scholar 

  11. Patel, A. D., El-Kaddah, N., Kinetics of inclusion removal from molten aluminum under an applied alternating magnetic field, Light Metals (ed. Huglen, R.) 1997, TMS, Warrendale, PA, 1997, 1013–1018.

    Google Scholar 

  12. Park, J. P., Morihira, A., Sassa, K. et al., Elimination of non-metallic inclusions using electromagnetic force, Tetsu-to-Hagane, 1994, 80(5): 31–36.

    Google Scholar 

  13. Taniguchi, S., Brimacombe, J. K., Application of pinch force to the separation of inclusion particles from liquid steel, ISIJ Int., 1994, 34: 722–731.

    Article  Google Scholar 

  14. Tanaka, Y., Sassa, K., Iwai, K. et al., Separation of non-metallic inclusions from molten metal using traveling magnetic field, Tetsu-to-Hagané, 1995, 81(12): 12–17.

    Google Scholar 

  15. Yamao, F., Sassa, K., Iwai, K. et al. Separation of inclusion in liquid metal using fixed alternating magnetic field, Tetsu-to-Hagané, 1997, 83(1): 30–35.

    Google Scholar 

  16. Makarov, S., Ludwig, R., Apelian, D., Electromagnetic separation techniques in metal casting II, Separation with super-conduting coils, IEEE Trans. on Magnetics, 2001, 37(2): 1024–1031.

    Article  Google Scholar 

  17. Li, T. X., Xu, Z. M., Sun, B. D. et al. Remove inclusions from aluminum melt in electromagnetic field, Acta Metall. Sinica, 2000, 13(5):1068–1074.

    Google Scholar 

  18. Zhong, Y. B., Ren, Z. M., Deng, K. et al., Separation of inclusions from liquid metal contained in a triangle/square pipe by travelling magnetic field, Trans. Nonferrous, Met. Soc. China, 2000, 10(2): 240–245.

    Google Scholar 

  19. Kolin, A., An electromagnetic phenomenon involving migration of neutral particles. Science, 1953, 117: 134–137.

    Article  Google Scholar 

  20. Leenov, D., Kolin, A., Theory of electromagnetophoresis I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles. J. Chem. Phy., 1954, 22(4): 683–688.

    Article  Google Scholar 

  21. Crepeau, P. N., Molten aluminum contamination: Gas, inclusions and dross, Modern Casting, 1997, 87(7): 39–41.

    Google Scholar 

  22. Shu, D., Sun, B. D., Wang, J. et al., Numerical calculation of electromagnetic expulsive force upon nonmetallic inclusions in aluminum melt: Part I, Spherical Particles, Metall. Mater. Trans. B, 2000, 31B: 1527–1533.

    Article  Google Scholar 

  23. Miroshnikov, V. A., Magnetohy drodynamic flow around a stationary sphere, Magnetohydrodynamics, 1980, 16(3): 262–268.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Da.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, D., Sun, B., Wang, J. et al. Magnetohydrodynamic study of electromagnetic separation of nonmetallic inclusions from aluminum melt. Sci. China Ser. E-Technol. Sci. 45, 417–425 (2002). https://doi.org/10.1360/02ye9048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ye9048

Keywords

Navigation