Skip to main content
Log in

Theory of intracavity-frequency-doubled solid-state four-level lasers

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The spatial distributions of the pumping, the population inversion density, and the intracavity photon densities of the fundamental and the second harmonic are taken into account in the rate equations of the intracavity-frequency-doubled cw lasers. By normalizing the related parameters, it is shown that the general solution of these space-dependent rate equations is dependent upon three dimensionless paramenters: the pump to laser-mode size ratio, the normalized pump level, and a parameter written as ηSHG, which is related to the ability of the nonlinear crystal to convert the fundamental to the second harmonic. By numerically solving these rate equations, a group of general curves are obtained to express the relations between the solution and the three dimensioniess parameters. In addition, the optimal pump to laser-mode size ratio and the optimal ηSHG are determined. A comparison with the result obtained under the plane-wave approximation is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthon, D. W., Sipes, D. L., Pier, T. J. et al., Intracavity doubling of cw diode-pumped Nd: YAG lasers with KTP, IEEE J. Quantum Electron., 1992, 28(4): 1148–1157.

    Article  Google Scholar 

  2. Liu, L. Y., Oka, M., Wiechmann, W. et al., Longitudinally diode-pumped continuous-wave 3.5 W green laser, Opt. Lett., 1994, 19(3): 189–191.

    Article  Google Scholar 

  3. Meyn, J. P., Huber, G., Intracavity frequency doubling of a continuous-wave, diode-pumped neodymium lanthanum scandium borate laser, Opt. Lett., 1994, 19(18): 143–1438.

    Article  Google Scholar 

  4. Martin, K. I., Clarkson, W. A., Hanna, D. C., 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser, Opt. Lett., 1996, 21(12): 875–877.

    Article  Google Scholar 

  5. Taoka, Y. K., Mizunchi, K., Yamamoto, K. et al., Intracavity second-harmonic generation with a periodically domaininverted LiTaO3 device, Opt. Lett., 1996, 21(24): 1972–1974.

    Article  Google Scholar 

  6. Chen, Y. F., Wang, S. C., Kao, C. F. et al., Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance, IEEE Photon. Technol. Lett., 1996, 8(10): 1313–1315.

    Article  Google Scholar 

  7. Martin, K. I., Clarkson, W. A., Hanna, D. C., Stable, high-power, single-frequency generation at 532 nm from a diodebar pumped Nd: YAG ring laser with an intracavity LBO frequency doubler, Appl. Opt., 1997, 36(18): 4149–4152.

    Article  Google Scholar 

  8. Chen, Y. F., Kao, C. F., Huang, T. M. et al., Single-mode oscillation of compact fiber-coupled laser-diode-pumped Nd: YV04/KTP green laser, IEEE Photon. Technol. Lett., 1997, 9(6): 740–742.

    Article  Google Scholar 

  9. Conroy, R. S., Kemp, A. J., Friel, G. J. et al., Microchip Nd: vanadate lasers at 1342 nm and 671 nm, Opt. Lett., 1997, 22(23): 1781–1783.

    Article  Google Scholar 

  10. Agnesi, A., Reali, G. C., Gobbi, P. G., 430 MW single-transverse-mode diode-pumped Nd: YV04 laser at 671 nm, IEEE J. Quantum Electron., 1998, 34(7): 1297–1300.

    Article  Google Scholar 

  11. Otsuka, K., Kawai, R., Asakawa, Y., Intracavity second-harmonic and sum-frequency generation with a laser-diodepumped multitransition-oscillation LiNdP4O12 laser, Opt. Lett., 1999, 24(22): 1611–1613.

    Article  Google Scholar 

  12. Hammons, D. A., Richardson, M., Chai, B. H. T. et al., Scaling of longitudinally diode-pumped self-frequency-doubling Nd: YCOB lasers, IEEE J. Quantum Electron., 2000, 36(8): 991–999.

    Article  Google Scholar 

  13. Smith, R. G., Theory of intracavity optical second harmonic generation, IEEE J. Quantum Electron., 1970, 6(4): 215–230.

    Article  Google Scholar 

  14. Baer, T., Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd: YAG lasers, J. Opt. Soc. Am. B, 1986, 3(9): 1175–1180.

    Article  Google Scholar 

  15. Helmfrid, S., Tatsuno, K., Stable single-mode operation of intracavity-doubled diode-pumped Nd: YVO4 lasers: theoretical study. J. Opt. Soc. Am. B, 1994, 11(3): 436–445.

    Article  Google Scholar 

  16. Fan, T. Y., Byer, R. L., Diode laser-pumped solid-state lasers, IEEE J. Quantum Electron., 1988, 24(6): 895–912.

    Article  Google Scholar 

  17. Laporta, R., Brussard, M., Design criteria for mode size optimization in diode-pumped solid-state lasers, IEEE J. Quantum Electron., 1991, 27(10): 2319–2326.

    Article  Google Scholar 

  18. Chen, Y. F., Kao, C. F., Wang, S. C., Analytical model for the design of fiber-coupled laser-diode end-pumped lasers, Opt. Commun., 1997, 133(1–6): 517–524.

    Article  Google Scholar 

  19. Chen, Y. F., Huang, T. M., Kao, C. F. et al., Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect, IEEE J. Quantum Electron., 1997, 33(8): 1424–1429.

    Article  Google Scholar 

  20. Zhang, X., Zhao, S., Wang, Q. et al., Modeling of diode-pumped actively Q-switched lasers, IEEE J. Quantum Electron. 1999, 35(12): 1912–1918.

    Article  Google Scholar 

  21. Zhang, X., Zhao, S., Wang, Q. et al., Modeling of passively Q-switched lasers, J. Opt. Soc. Am. B, 2000, 17(7): 1166–1175.

    Article  Google Scholar 

  22. Zhang, X., Zhao, S., Wang, Q., Passively Q-switched self-frequency-doubled Nd3+: Gd Ca40(BO3)3 laser, J. Opt. Soc. Am. B, 2001, 18(6): 770–779.

    Article  MathSciNet  Google Scholar 

  23. Nagai, H., Kume, M., Ohta, I., Low-noise operation of a diode-pumped intracavity-doubled Nd: YAG laser using a Brewster plate, IEEE J. Quantum Electron., 1992, 28(4): 1164–1168.

    Article  Google Scholar 

  24. Innocenzi, M. E., Yura, H. T., Fincher, C. L. et al., Thermal modeling of continuous-wave end-pumped solid state lasers, Appl. Phys. Lett., 1990, 56(19): 1831–1833.

    Article  Google Scholar 

  25. Wang, C., Chow, Y. T., Gambling, W. A. et al., Efficient self-frequency doubling of Nd: GdCOB crystal by type-I phase matching out of its principle planes, Opt. Commun., 2000, 174, 471–474.

    Article  Google Scholar 

  26. Pruneri, V., Webjorn, J., Russell, P., St J. et al., Intracavity second-harmonic generation of 0.532 μm in bulk periodically poled lithium niobate, Opt. Commun., 1995, 116(1–3): 159–162.

    Article  Google Scholar 

  27. Zhang, S., Cheng, Z., Han, J. et al., Growth and investigation of efficient self-frequency-doubling Nd x Gd1−x Ca4O(BO3)3 crystal, J. Crystal Growth, 1999, 206(2): 197–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Qingpu, W., Shengzhi, Z. et al. Theory of intracavity-frequency-doubled solid-state four-level lasers. Sci. China Ser. E-Technol. Sci. 45, 130–139 (2002). https://doi.org/10.1360/02ye9016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ye9016

Keywords

Navigation