Skip to main content
Log in

Similarity of ideal gas flow at different scales

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The similarity of ideal gas flow at different scales is investigated analytically and numerically. With the compressible and rarefied effects considered, two dimensionless parameters, Mach number and Knudsen number, are proposed as the similarity criterions, because the Reynolds number can be expressed by the Mach number and the Knudsen number of ideal gases. A DSMC method is used to simulate flows at different scales with the same Ma and Kn, including subsonic channel flows and the supersonic flows over a hot plate. Comparisons between the results of different scales show that the normalized fields of macroscopic quantities are the same. This confirms the similarity. Especially, the results indicate that the micro flow are similar to the rarefied flow of ideal gas, which suggests that many transformations are available from the existing rarefied flow results to the micro flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

sound speed

P :

pressure

c m :

most probable molecular speed

Re :

Reynolds number

d :

molecular diameter

T :

overall temperature

H :

height of the computer domain

T g :

gas temperature on wall surfaces

k :

Boltamann constant

Kn :

Knudsen number

T u :

translational temperature

Kn local :

local Knudsen number

T rot :

rotational temperature

L :

characteristic

length:

length of the computed domain

T :

treestream temperature

m :

molecular mass

T w :

wall temperature of cylinder

Ma :

Mach number

\(\bar v_m \) :

molecular mean velocity

n :

number density

v :

molecular velocity

γ:

specific heat rate

μ:

dynamic viscosity

λ:

mean free path

ν:

kinetic viscosity

ρ:

density

ɛrot :

rotational energy

ζ:

number of internal degree of freedom

σT :

total collision cross-section

Δt :

time step

ɛtr :

translational energy

Δx :

size of a cell

∞:

freestream

tr:

translational mole

w:

wall surfaces

rot:

rotational mode

References

  1. Kamiadakis, G. E., Beskok, A., Micro Flows: Fundamentals and Simulation, New York: Springer-Verlag, 2002.

    Google Scholar 

  2. Bird, G. A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 1994.

    Google Scholar 

  3. Oran, E. S., Oh, C. K., Cybyk, B. Z., Direct simulation Monte Carlo: Recent advances and applications, Annual Review of Fluid Mechanics, 1998, 30: 403–441.

    Article  MathSciNet  Google Scholar 

  4. Koura, K., Improved null-collision technique in the direct simulation Monte Carlo method: Application to vibrational relaxation of nitrogen, Computers Math. Applic., 1998, 35: 139–154.

    Article  MATH  Google Scholar 

  5. Cheng, C. H., Liao, F. L., DSMC analysis of rarefied gas flow over a rectangular cylinder at all Knudsen numbers, J. Fluid Engineering of ASME, 2000, 122: 720–729.

    Article  Google Scholar 

  6. Pan, L. S., Ng, T.Y., Xu, D. et al. Determination of temperature jump coefficient using the direct simulation Monte Carlo Method, J. Micromechanics and Microengineering, 2002, 12: 41–52.

    Article  Google Scholar 

  7. Pan, L. S., Liu, G. R., Lam, K. Y. Determination of slip coefficient for rarefied gas flow using direct simulation Monte Carlo, J. Micromechanics and Microengineering, 1999, 9: 89–96.

    Article  Google Scholar 

  8. Kannenberg, K. C., Boyd, I. D., Three-dimensional Monte Carlo simulations of plume impingement, J. Thermophysics and Heat Transfer, 1999, 13: 226–235.

    Article  Google Scholar 

  9. Yan, F., Farouk, B., Discontinuous wall temperature distribution induced gas flow in an enclosure at high Knudsen number, in Symposiums of International Conference of Heat and Mass Transfer, France, 2002.

  10. Ho, C. M., Tai, Y. C., Micro-electro-mechanical-systems(MEMS) and fluid flows, Annu. Rev. Fluid Mech., 1998, 30: 579–612.

    Article  Google Scholar 

  11. Mohamed Gad-el-Hak, The fluid mechanics of microdevices—The freeman scholar lecture, Journal of Fluids Engineering, 1999, 121: 5–33.

    Article  Google Scholar 

  12. Liou, W. W., Fang, Y., Heat transfer in microchannel devices using DSMC, J. MEMS, 2001, 274–279.

  13. Wu, J. S., Tseng, K. C., Analysis of micro-scale gas flow with pressure boundaries using direct simulation Monte Carlo Method, J. Computers and Fluids, 2001, 30: 711–735.

    Article  MATH  Google Scholar 

  14. Hadjiconstantinou, N. G., Simek, O., Constant-wall-temperature Nusselt number in micro and nano-channels, J. Heat Transfer of ASME, 2002, 124: 356–364.

    Article  Google Scholar 

  15. Alexeenko, A. A., Levin, D. A., Gimelshein, S. F. et al., Numerical simulation of high-temperature gas flow in a millimeter-scale thruster, J. Thermophysics and Heat Transfer, 2002, 16: 10–16.

    Article  Google Scholar 

  16. Xue, H., Fan, Q., Shu, C., Prediction of micro-channel flows using direct simulation Monte Carlo, Probabilistic Engineering Mechanics, 2000, 15: 213–219.

    Article  Google Scholar 

  17. Sun, Q., Boyd, I. D., Numerical simulation of gas flow over microscale airfoils, J. Thermophysics and Heat Transfer, 2002, 76: 171–179.

    Article  Google Scholar 

  18. Wang, X., Wang, Q. W. Tao, W. Q. et al., Simulation of rarefied gas flow and heat transfer in microchannels, Science in China, Ser. E, 2002, 45(3): 321–327.

    Article  Google Scholar 

  19. Chapman, S., Cowling, T. G., The Mathematical Theory of Nonuniform Gases, 3rd ed., Cambridge: CUP, 1970.

    Google Scholar 

  20. Shen, C., Raredied Gas Dynamics (in Chinese), Beijing: National Defence Industry Publishing House, 2003.

    Google Scholar 

  21. Beskok, A., Simulations and Models for Gas Flows in Microgeomitries, Ph. D. Dissertation, Cambridge: MIT 1996.

    Google Scholar 

  22. Nance, R. P., Hash, D. B., Hassan, H. A., Role of boundary conditions in Monte Carlo Simulation of MEMS devices, Journal of Thermalphysics and Heat Transfer, 1998, 12: 447–449.

    Article  Google Scholar 

  23. Liou, W. W., Fang, Y. C., Implicit boundary conditions for direct simulation Monte Carlo method in MEMS flow predictions, Computer Modeling in Engineering & Science, 2000, (4): 119–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Moran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Li, Z. Similarity of ideal gas flow at different scales. Sci. China Ser. E-Technol. Sci. 46, 661–670 (2003). https://doi.org/10.1360/02ye0072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ye0072

Keywords

Navigation