Skip to main content
Log in

Transcriptional silencing and developmental reactivation of cry1Ab gene in transgenic rice

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

One transgenic rice line lacking Cry1Ab expression product was screened in the progenies of Agrobacterium-transformed transgenic rice variety Zhong 8215 with a cry1Ab gene under field releasing conditions by using GUS histochemical assay and Western blot. Molecular hybridization results revealed that the cry1Ab gene was silenced in the transgenic rice variety Zhong 8215 and two copies of ubiquitin promoter were integrated into the rice genome. The silencing of cry1Ab gene in transgenic rice was found to be due to the methylation of the ubiquitin promoter as revealed by methylation analysis. Meanwhile, different concentrations of demethylation reagent 5-azacytidine combining with different treatment time were employed to treat the silenced transgenic rice seeds. The results indicated that 5-azacytidine could reactivate 8%–30% of the silenced transgenic rice plants and the expression level of the reactivated cry1Ab transgene could reach as high as 0.147% of the total soluble protein. Treatment with low concentration of 5-azacytidine (45 mg/L for 1 d and 2 d) could lead to the highest reactivation ratio and the highest expression level of the cry1Ab gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnegan, J., McElory, D., Transgene inactivation: plants fight back! Bio/Technology, 1994, 12: 883–888.

    Article  Google Scholar 

  2. Matzke, M., Matzke, A. J. M., How and why do plants inactivate homologous (trans)genes? Plant Physiology, 1995, 107: 679–685.

    PubMed  CAS  Google Scholar 

  3. Wassenegger, M., Pélissier, T., A model for RNA-mediated gene silencing in higher plants, Plant Mol. Biol., 1998, 37: 349–362.

    Article  PubMed  CAS  Google Scholar 

  4. Peerbolte, R., Leenhouts, K., Hooykaas-van Slogteren, G. M. S. et al., Clone from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization T-DNA, methylation and conditional expression of opine genes, Plant Mol. Biol., 1986, 7: 285–299.

    Article  CAS  Google Scholar 

  5. Assaad, F. F., Tucker, K. L., Signer, E. R., Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis, Plant Mol. Biol., 1993, 22: 1067–1085.

    Article  PubMed  CAS  Google Scholar 

  6. Kumpatla, S. P., Teng, W., Buchholz, W. G. et al., Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice, Plant Physiology, 1997, 115: 361–373.

    Article  PubMed  CAS  Google Scholar 

  7. Renckens, S., De Greve, H., Van Montagu, M. et al., Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation, Mol. Gen. Genet., 1992, 233: 53–64.

    Article  PubMed  CAS  Google Scholar 

  8. Santi, D. V., Garret, C. E., Barr, P. J., On the mechanisms of inhibition of DNA-cytosine methyltransferase by cytosine analogue, Cell, 1983, 33: 9–10.

    Article  PubMed  CAS  Google Scholar 

  9. Xiang, Y. B., Liang, Z. Q., Gao, M. W. et al., Agrobacterium-mediated transformation of insecticidal Bacillus thuringiensis cryIA(b) and cryIA(c) genes and their expression in rice, Chin. J. Biotech. (in Chinese), 1999, 15 (4): 494–500.

    CAS  Google Scholar 

  10. Rueb, S., Hensgens, L. A. M., An improved histochemical staining for β-D-glucuronidase activity in monocotyledonous plants, Rice Genet. Newsl., 1989, 6: 168–169.

    Google Scholar 

  11. Lu, Y. J., Zheng, K. L., A simple method to extract DNA from rice, Chin. J. Rice Sci. (in Chinese), 1992, 6(1): 47–48.

    Google Scholar 

  12. Sambrook, J., Fritsch, E. F., Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Press, 1989, 897–898.

    Google Scholar 

  13. Wu, G., Cui, H. R., Shu, Q. Y. et al., Inheritance stability and expression of cry1Ab gene in the progenies of the transgenic “Kemingdao”, Journal of Agricultural Biotechnology (in Chinese), 2000, 8(3): 253–256.

    Google Scholar 

  14. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyeing binding, Anal. Biochem., 1976, 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L. et al., Transformation of maize cells and regeneration of fertile transgenic plants, Plant Cell, 1990, 2: 603–618.

    Article  PubMed  CAS  Google Scholar 

  16. Spencer, T. M., Gordon-Kamm, W. J., Daines, R. J. et al., Bialaphos selection of stable transformants from maize cell culture, Theor. Appl. Genet., 1990, 79: 625–631.

    Article  CAS  Google Scholar 

  17. Dorer, D. R., Do transgene arrays form heterochromatin in vertebrates? Transgenic Research, 1997, 6: 3–10.

    Article  PubMed  CAS  Google Scholar 

  18. Mittelsten Scheid, O., Paszkowski, J., Potrykus, I., Reversible inactivation of a transgene in Arabidopsis Thaliana, Mol. Gen. Genet, 1991, 228: 104–112.

    PubMed  CAS  Google Scholar 

  19. Kilby, N. J., Leyser, M. H. O., Furner, I. J., Promoter methylation and progressive transgene inactivation in Arabidopsis, Plant Mol. Biol., 1992, 20: 103–112.

    Article  PubMed  CAS  Google Scholar 

  20. Matzke, M., Matzke, A. J. M., Mittelsten Scheid, O., Inactivation of repeated genes-DNA-DNA interaction? in Homologous Recombination and Gene Silencing in Plants (ed. Paszkowski, J.), Dordrecht: Kluwer Academic, 1994, 271–307.

    Google Scholar 

  21. Peter, A. J., Altering gene expression with 5-azacytidine, Cell, 1985, 40: 485–486.

    Article  Google Scholar 

  22. Renckens, S., De Greve, H., Van Montagu, M. et al., Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation, Mol. Gen. Genet., 1992, 233: 53–64.

    Article  PubMed  CAS  Google Scholar 

  23. Kumpatla, S. P., Hall, T. C., Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice, Plant Mol. Biol., 1998, 38: 1113–1122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Qingyao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Cui, H., Shu, Q. et al. Transcriptional silencing and developmental reactivation of cry1Ab gene in transgenic rice. Sci. China Ser. C.-Life Sci. 45, 68–78 (2002). https://doi.org/10.1360/02yc9008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc9008

Keywords

Navigation