Skip to main content
Log in

β-adrenergic modulation of in vivo long-term potentiation in area CA1 and its role in spatial learning in rats

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Activation of β-adrenoceptors in area CA1 of the hippocampus facilitates in vitro long-term potentiation (LTP) in this region. However, it is unclear if in vivo LTP in area CA1 and hippocampus-dependent learning are subjected to β-adrenergic regulation. To address this question, we investigated the effects of the β-adrenergic agonist L-isoproterenol or antagonist DL-propranolol on in vivo LTP of area CA1 and the spatial learning in Morris water maze. In the presence of L-isoproterenol (through local infusion into area CA1), the theta-pulse stimulation with the parameter of 10 Hz, 150 pulses/train, 1 train, a frequency weakly modifying synaptic strength, induced a robust LTP, and this effect was blocked when DL-propranolol was co-administered. By contrast, the theta-pulse stimulation with the parameter of 5 Hz, 150 pulses/train, 3 trains, a frequency strongly modifying synaptic strength, induced a significantly smaller LTP when DL-propranolol was administered into area CA1. Accordingly, DL-propranolol impaired the spatial learning in the water maze when infused into area CA1 20 min pretraining. Compared with control rats, the DL-propranolol-treated rats showed significantly slower learning in the water maze and subsequently exhibited poor memory retention at 24-h test. These results suggest that β-adrenoceptors in area CA1 are involved in regulating in vivo synaptic plasticity of this area and are important for spatial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Squire, L. R., Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans, Psychol. Rev., 1992, 99(2): 195–231.

    Article  PubMed  CAS  Google Scholar 

  2. Bliss, T. V., Collingridge, G. L. A., Synaptic model of memory: Long-term potentiation in the hippocampus, Nature, 1993, 361(6407): 31–39.

    Article  PubMed  CAS  Google Scholar 

  3. Eichenbaum, H., Otto, T., LTP and memory: Can we enhance the connection? TINS, 1993, 16(5): 163–164.

    PubMed  CAS  Google Scholar 

  4. Malenka, R. C., Nicoll, R. A., Long-term potentiation-—A decade of progress? Science, 1999, 285(5435): 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  5. Martin, S. J., Grimwood, P. D., Morris, R. G. M., Synaptic plasticity and memory: An evaluation of the hypothesis, Annu. Rev. Neurosci., 2000, 23: 649–711.

    Article  PubMed  CAS  Google Scholar 

  6. Morris, R. G. M., Synaptic plasticity and learning: Selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5, J. Neurosci., 1989, 9(9): 3040–3057.

    PubMed  CAS  Google Scholar 

  7. Stevens, C. F. A., Million dollar question: Does LTP = memory? Neuron, 1998, 20(1): 1–2.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, G. P., Blitzer, R. D., Connor, J. H. et al., Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate, J. Neurosci., 2000, 20(21): 7880–7887.

    PubMed  CAS  Google Scholar 

  9. Giovannini, M. G., Blitzer, R. D., Wong, T. et al., Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation, J. Neurosci., 2001, 21(18): 7053–7062.

    PubMed  CAS  Google Scholar 

  10. Katsuki, H., Izumi, Y., Zorumski, C. F., Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region, J. Neurophysiol., 1997, 77(6): 3013–3020.

    PubMed  CAS  Google Scholar 

  11. Thomas, M. J., Moody, T. D., Makhinson, M. et al., Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region, Neuron, 1996, 17(3): 475–482.

    Article  PubMed  CAS  Google Scholar 

  12. Winder, D. G., Martin, K. C., Muzzio, I. A. et al., ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors, Neuron, 1999, 24(3): 715–726.

    Article  PubMed  CAS  Google Scholar 

  13. Paxinos, G., Watson, C., The Rat Brain in Stereotaxic Coordinates, 2nd ed., San Diego: Academic Press, 1996.

    Google Scholar 

  14. Morris, R. G. M., Garrud, P., Rawlins, J. N. et al., Place navigation impaired in rats with hippocampal lesions, Nature, 1982, 297(5868): 681–683.

    Article  PubMed  CAS  Google Scholar 

  15. Morris, R. G. M., Anderson, E., Lynch, G. S. et al., Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5, Nature, 1986, 319(6056): 774–776.

    Article  PubMed  CAS  Google Scholar 

  16. Sandin, J., Nylander, I., Georgieva, J. et al., Hippocampal dynorphin B injections impair spatial learning in rats: A kappa-opioid receptor-mediated effect, Neuroscience, 1998, 85(2): 375–382.

    Article  PubMed  CAS  Google Scholar 

  17. McGaugh, J. L., Cahill, L., Roozendaal, B., Involvement of the amygdala in memory storage: Interaction with other brain systems, Proc. Natl. Acad. Sci. USA, 1996, 93(24): 13508–13514.

    Article  PubMed  CAS  Google Scholar 

  18. Ferry, B., Roozendaal, B., McGaugh, J. L., Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: A critical involvement of the amygdala, Biol. Psychiatry, 1999, 46(9): 1140–1152.

    Article  PubMed  CAS  Google Scholar 

  19. Abel, T., Nguyen, P. V., Barad, M. et al., Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory, Cell, 1997, 88(5): 615–626.

    Article  PubMed  CAS  Google Scholar 

  20. Blum, S., Moore, A. N., Adams, F. et al., A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory, J. Neurosci., 1999, 19(9): 3535–3544.

    PubMed  CAS  Google Scholar 

  21. Schafe, G. E., Nadel, N. V., Sullivan, G. M. et al., Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP Kinase, Learn. Mem., 1999, 6(2): 97–110.

    PubMed  CAS  Google Scholar 

  22. Selcher, J. C., Atikins, C. M., Trzaskos, J. M. et al., A necessity for MAP kinase activation in mammalian spatial learning, Learn. Mem., 1999, 6(5): 478–490.

    Article  PubMed  CAS  Google Scholar 

  23. Silva, A. J., Kogan, J. H., Frankland, P. W. et al., CREB and memory, Annu. Rev. Neurosci., 1998, 21: 127–148.

    Article  PubMed  CAS  Google Scholar 

  24. Impey, S., Obrietan, K., Storm, D. R., Making new connections: Role of ERK/MAP kinase signaling in neuronal plasticity, Neuron, 1999, 23(1): 11–14.

    Article  PubMed  CAS  Google Scholar 

  25. Kandel, E. R., The molecular biology of memory storage: A dialogue between genes and synapses, Science, 2001, 294(5544): 1030–1038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoming Li.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Zhang, X. & Li, B. β-adrenergic modulation of in vivo long-term potentiation in area CA1 and its role in spatial learning in rats. Sci. China Ser. C.-Life Sci. 46, 605–614 (2003). https://doi.org/10.1360/02yc0243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yc0243

Keywords

Navigation