Skip to main content
Log in

Quantum chemical study on the one-carbon unit transfer of imidazolinium

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

One-carbon unit transfer reaction of folate cofactor model compound, 1-acetyl-2-methyl-imidazolinium, with 1,2-diaminobenzene has been studied theoretically with ONIOM method. The result shows that there are two pathways to complete this reaction because the imidazolinium ring has two breaking patterns. Both the two pathways have six steps. They are combination of two reactants, proton migration, break of five-membered ring, formation of benzimidazole derivate, another proton migration, and formation of final products. In each of the above pathways, the two proton migration steps have higher energy, which illuminate that the reaction is catalyzed by general acid-base. This fact agrees with the experimental results of enzymatic one-carbon unit transfer at oxidation level of formate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, T., Wang, C., Maras, B. et al., Thermodynamic analysis of the binding of the polyglutamate chain of 5-formyltetrahydropteroylpolyglutamates to serine hydroxymethyltransferase, Biochemistry, 1998, 37: 13536–13542.

    Article  CAS  Google Scholar 

  2. Blakley, R. L., The Biochemistry of Folic Acid and Related Pteridines, Amsterdam: North-Holland Publishing Co., 1969, 15–28.

    Google Scholar 

  3. Kim, Y.-I., Folate and carcinogenesis: Evidence, mechanisms, and implications, J. Nutr. Biochem., 1999, 10: 66–88.

    Article  CAS  Google Scholar 

  4. Leary, R. P., Beaudette, N., Kisliuk, R. L., Interaction of deoxyuridylate with thymidylate synthetase, J. Biol. Chem., 1975, 250: 4864–4868.

    CAS  Google Scholar 

  5. Warren, L., Buchanan, J. M., 2-Amino-N-ribosylacetamide 5′-phosphate (glycinamide ribotide) transformylase, J. Biol. Chem., 1957, 229: 613–626.

    CAS  Google Scholar 

  6. Warren, L., Flaks, J. G., Buchanan, J. M., Integration of enzymatic transformylations, J. Biol. Chem., 1957, 229: 627–640.

    CAS  Google Scholar 

  7. Reinald, H., Pandit, U. K., A route to optically active octahydroindolo [2,3-a] quinolizines, Tetrahedron, 1992, 48: 6521–6528.

    Article  Google Scholar 

  8. Stoit, A. R., Pandit, U. K., An approach to deethyleburnamonine, Tetrahedron, 1989, 45: 849–853.

    Article  CAS  Google Scholar 

  9. Bieraugel, H., Plemp, R., Hiemstra, H. C. et al., Synthesis and carbon transfer reactions of N5, N10-methenyl and N5, N10-methylentetrahydrofolate models, Tetrahedron, 1983, 39: 3971–3979.

    Article  CAS  Google Scholar 

  10. Huizenga, R. H., van Wiltenburg, J., Bieraugel, H. et al., A synthetic strategy to the aspidosperma skeleton, Synthesis of the 21-epimer of 20-deethyl-3,17-dioxo-16-echoxycarbonyl-1-methylaspidospermidine, Tetrahedron, 1991, 47: 4165–4174.

    Article  CAS  Google Scholar 

  11. Chen Jianxin, Pan Jigang, Xia Chizhong, Mimicking of structure and propertied of tetrahydrofolic coenzyme and study on their substituted one-carbon unit transfer reactions, Acta Chim. Sinica, 1998, 56: 819–826.

    CAS  Google Scholar 

  12. Xia Chizhong, Zhao Bingjun, Zhou Peiwen, Synthesis of tetrahydrofolate coenzyme models, 1,2-dimethyl-3-m(p)-nitro-phenylsulfonyl imidazolinium iodide and their methyl-substituted one carbon unit transfer reactions, Chin. Sci. Bull., 1996, 41(2): 172–173.

    CAS  Google Scholar 

  13. Daniel, A. D., Scuseria, G. E., What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations? J. Chem. Phys., 1999, 110: 1321–1329.

    Article  Google Scholar 

  14. Millam, J. M., Scuseria, G. E., Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations, J. Chem. Phys., 1997, 106: 5569–5574.

    Article  CAS  Google Scholar 

  15. Titmuss, S. J., Cummins, P. L., Bliznyuk, A. A., Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods applied to enzyme reactions, Chem. Phys. Lett., 2000, 320: 169–176.

    Article  CAS  Google Scholar 

  16. York, D. M., Lee, T. -S., Yang, W., Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules, Chem. Phys. Lett., 1996, 263: 297–304.

    Article  CAS  Google Scholar 

  17. Lee, T. -S., York, D. M., Yang, W., Linear-scaling semiempirical quantum calculations for macromolecules, J. Chem. Phys., 1996, 105: 2744–2747.

    Article  CAS  Google Scholar 

  18. Lewis, J. P., Carter, W. Jr., Hermans, J. et al., Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation, J. Am. Chem. Soc., 1998, 120: 540–5410.

    Google Scholar 

  19. Malsubara, T., Sieber, S., Morokuma, K., A test of the new “integrated MO + MM” (IMOMM) method for the conformational energy of ethane and n-butane, Inter. J. Quantum Chem., 1996, 60: 1101–1109.

    Article  Google Scholar 

  20. Svensson, M., Humbel, S., Froese, R. D., ONIOM: A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions, A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition, J. Phys. Chem.,1996, 100: 19357–19363.

    Article  CAS  Google Scholar 

  21. Stewart, J. J. P., Optimization of parameters for semiempirical methods, II. Applications, J. Comput. Chem., 1989, 10: 221–264.

    Article  CAS  Google Scholar 

  22. Benkovics, J., On the Mechanism of action of folate-and biopterin-requiring enzymes, Ann. Rev. Biochem., 1980, 49: 227–251.

    Article  Google Scholar 

  23. Burdick, B. A., Benkovic, P. A., Benkovic, S. J., Studies on models for tetrahydrofolic acid, hydrolysis and melhoxyaminolysis of amidines, J. Am. Chem. Soc., 1977, 99: 5716–5725.

    Article  CAS  Google Scholar 

  24. Bullard, W. P., Farina, L. J., Farina, P. R. et al., Studies on models for tetrahydrofolic acid, kinetically significant transport process in general base catalyzed aminolysis of a formamidine, J. Am. Chem. Soc., 1974, 96: 7295–7302.

    Article  CAS  Google Scholar 

  25. Fife, T. H., Pellino, A. M., General-acid catalysis of imidazolidine ring opening, The hydrolysis of ethyl N, N-[1-(p-(dimethylamino) phenyl) propenediyl]-p-[((2-tetrahydroquinolinyl) methylene) amino] benzoate, J. Am. Chem. Soc., 1981, 103: 1201–1207.

    Article  CAS  Google Scholar 

  26. Fife, T. H., Pellino, A. M., General-acid-catalyzed imidazolidine ring opening, hydrolysis of symmetrical and unsymmetrical 1, 3-imidazolindine of p-dimethylaminocinnamaldehyde, J. Am. Chem. Soc., 1980, 102: 3062–3071.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dacheng Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, C., Qi, C., Feng, D. et al. Quantum chemical study on the one-carbon unit transfer of imidazolinium. Sc. China Ser. B-Chem. 45, 257–266 (2002). https://doi.org/10.1360/02yb9034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yb9034

Keywords

Navigation