Skip to main content
Log in

Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang

  • Notes
  • Published:
Chinese Science Bulletin

Abstract

Eolian loess is widely distributed on the various geomorphic surfaces between 700–2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut Desert in the Junggar Basin. The thickest section of loess was found in the Shawan and Shihezi regions. Paleomagnetic and climatic proxy analyses of over 71 m of a loess-paleosol sequence on the highest terrace of the Qingshui He (River) in the Shawan show that the paleomagnetic Bruhues/Matuyama (B/M) boundary lies at the bottom of paleosol S8, at a depth of 69.5 m, and the bottom of the sequence was estimated to be ∼0.8 Ma. This implies that the extremely dry climatic conditions in the Junggar Basin and the initial Gurbantunggut Desert were present at least by 0.8 Ma. High-resolution grain size series demonstrate that this area and desert expansion experienced two dramatic periods of desert expansions that occurred at ∼0.65 Ma and 0.5 Ma, respectively; and the subsequent continuous enhancement led to the environment presently observed. This tremendous environmental effect, caused by large-scale expansion of the desert and arid region of inner Asia, might be an important driving force for the global temperature drop that occurred in the mid-Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreae, M. O., Climate effects of changing atmospheric aerosol levels, World Survey of Climatology, Future Climates of the World, Volume 16 (eds. A. Henderson and A. Sellers), Amsterdam: Elsevier, 1995, 341–392.

    Google Scholar 

  2. Harvey, L. D. D., Climatic impact of ice-age aerosols, Nature, 1988, 334: 333.

    Article  Google Scholar 

  3. Martin, J. H., Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanography, 1990, 5: 1.

    Article  Google Scholar 

  4. Shine, K. P., P. M. de F. Forster, The effect of human activity on radiative forcing of climate change: a review of recent developments, Global and Planetary Change, 1999, 20: 205.

    Article  Google Scholar 

  5. Zhang, X. Y., Arimoto, R., An, Z. S., Dust emission from Chinese desert sources linked to variations in atmospheric circulation, J. Geophys. Res., 1997, 102: 28041.

    Article  CAS  Google Scholar 

  6. Duce, R. A., Liss, P. S., Merrill, J. T. et al., The atmospheric input of trace species to the world ocean, Global Biogeochemical Cycles, 1991, 5: 193.

    Article  CAS  Google Scholar 

  7. Rea, D. K., The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of the wind, Reviews of Geophysics, 1994, 32: 159.

    Article  Google Scholar 

  8. Biscaye, P. I., Grousset, F. E., Revel, M. et al., Asian provemance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland, J. Geophys. Res., 1997, 102: 26765.

    Article  CAS  Google Scholar 

  9. Zhang, X. Y., Arimoto, R., An, Z. S., Glacial and interglacial patterns for Asian dust transport, Quat. Sci. Rev., 1999, 18: 811.

    Article  Google Scholar 

  10. Dong, G. R., Jing, J., Gao, S. Y. et al., The Climate Change in North China Deserts since Late Pleistocene, Quat. Sci. Res. (in Chinese), 1990, 3: 213.

    Google Scholar 

  11. An, Z. S., The Quaternary Loess Geology and Global Change (2) (in Chinese), Beijing: Sci. Press, 1990.

    Google Scholar 

  12. Sun, J. M., Ding, Z. L., Liu, T. S. et al., Desert distributions during the glacial maximum and climate optimum: example of China, Episodes, 1998, 21: 28.

    Google Scholar 

  13. Li, J. J., Fang, X. M., Uplift of Qinghai-Tibetan Plateau and Environmental change, Chin. Sci. Bull., 1998, 44 (23): 2217.

    Google Scholar 

  14. Sun, D. H., Liu, T. S., Cheng, M. Y. et al., Magnetostratigraphy and paleoclimate of red-clay sequences from the Chinese Loess Plateau, Sci. in Chin., Ser. D, 1997, 40: 337.

    Article  Google Scholar 

  15. Ding, Z. L., Sun, J. M., Yang, S. L. et al., Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau, Geophys. Res. Lett., 1998, 25: 1225.

    Article  Google Scholar 

  16. Guo, Z. T., Peng, S. Z., Hao, Q. Z. et al., The Relation between the development of arid NW China and ice cover in the North Pole and the uplift of the Tibetan Plateau in Late Tertiary, Quat. Sci. Res. (in Chinese), 1999, 6: 556.

    Google Scholar 

  17. An, Z. S., Kutzbach, J. E., Prell, W. L. et al., Evolution of Asian monsoon and phased uplift of the Himalaya-Tibetan plateau since late Miocene times, Nature, 2001, 411: 62.

    Article  CAS  Google Scholar 

  18. Fang, X. M., Lü, L. Q., Yang, S. L. et al., Loess in Kunlun Mountain and its implications on desert development and Tibetan Plateau uplift in West China, Sci. in Chin., Ser. D, 2002, 45: 289.

    Article  CAS  Google Scholar 

  19. Pan, B. T., Wu, G. J., Wang, Y. X. et al., Age and genesis of the Shagou River terrace in eastern Qilian Mountains, Chin. Sci. Bull., 2001, 46(6): 509.

    Article  Google Scholar 

  20. Zhang, J. B., Deng, Z. F., Outline of Xinjiang Precipitation (in Chinese). Beijing: Meteor. Press, 1987.

    Google Scholar 

  21. Obuluchv, B. A., Loess on the northwest Junggar Basin, Geol. Trans. (in Chinese), 1956(8): 8.

  22. Liu, T. S. et al., Loess Deposition in China (in Chinese), Beijing: Sci. Press, 1965.

    Google Scholar 

  23. Zhang, H. Y., Wang, H. Z., The loess stratigraphy on the north slope of Tian Shan and the paleoclimate, Arid Region-Xinjiang Quaternary Research Collection (in Chinese), Urumqi: Xinjiang People’s Press, 1985, 95–106.

    Google Scholar 

  24. Xinjiang Comprehensive Exploration Team of CAS, Xinjiang Quaternary Geology and Environment (in Chinese), Beijing: Science Press, 1995, 11–17, 56–67.

    Google Scholar 

  25. Champion, D. E., Lanphere, M. A., Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons, J. Geophy. Res., 1988, 93: 11667.

    Article  Google Scholar 

  26. Zhu, R. X., Kazansky, A., Matasova, G. et al., The loess magnetism of loess deposition in south Siberia, Chin. Sci. Bull. (in Chinese), 2000, 45 (11), 1200.

    Google Scholar 

  27. Li, J. J., Evolution of the Environment in northwest China since late Pleistocene, Quat. Sci. Rev. (in Chinese), 1990(3): 197.

  28. Fang, X. M., Li, J. J., Van der Voo, R., Paleomagnetic/rockagnetic and grain size evidence for intensified Asian atmospheric circulation since 800 kyrs, Earth Planet Sci. Lett., 1999, 165: 129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fang, X., Shi, Z., Yang, S. et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang. Chin. Sci. Bull. 47, 1381–1387 (2002). https://doi.org/10.1360/02tb9305

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02tb9305

Keywords

Navigation