Skip to main content
Log in

Protein engineering of insulin: Two novel fast-acting insulins [B16Ala]insulin and [B26Ala]insulin

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fastacting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heimerhorst, E., Stokes, G. B., Self-association of insulin: Its pH dependence and effect of plasma, Diabetes, 1987, 36: 261–264.

    Article  Google Scholar 

  2. Baker, E. N., Blundll, T. L., Cutfield, J. F. et al., The structure of 2Zn pig insulin crystals at 1.5Å resolution, Phil. Trans. R. Soc. Lond., 1988, B319: 369–456.

    Google Scholar 

  3. Insulin Research Group, Academia Sinica, Studies on the mechanisms of insulin action (I)—The interactions of insulin and its analogs with insulin receptor, Scientia Sinica, 1974, 17: 779–792.

    Google Scholar 

  4. Pullen, R. A., Lindsay, D. G., Wood, S. P. et al., Receptor-binding region of insulin, Nature, 1976, 259: 369–373.

    Article  PubMed  CAS  Google Scholar 

  5. Berger, M., Cuppers, H. J., Hegner, H. et al., Absorption kinetecs and biological effects of subcultaneously injected insulin preparations, Diabetes Care, 1982, 5: 77–91.

    Article  PubMed  CAS  Google Scholar 

  6. Galloway, J. A., Spradlin, C. T., Nelson, R. L. et al., Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures, Diabetes Care, 1981, 4: 366–376.

    Article  PubMed  CAS  Google Scholar 

  7. Patrick, A. W., Collier, A., Matthews, D. M. et al., The importance of the time interval between insulin injection and breakfast in determining postprandial glycaemic control: A comparison between human and porcine insulin, Diabetic Med., 1988, 5:32–35.

    Article  PubMed  CAS  Google Scholar 

  8. DiMarchi, R. D., Mayer, J. P., Fan, L. et al., Synthesis of a fast-acting insulin based on structural homology with insulin-like growth factor I, in Peptides, Chemistry and Biology, Proceedings of the Twelfth American Peptide Symposium (eds. Smith, J. A., River, J. E.), Netherlands: ESCOM, 1992, 26–28.

    Google Scholar 

  9. Kang, S., Brange, J., Burch, A. et al., Absorption kinetics and action profiles of subcultaneously administered insulin analogues (AspB9GluB27, AspBlO, AspB28) in healthy subjects, Diabetes Care, 1991, 14: 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  10. Mudallar, S. R., Strange, P., Lindberg, F. A. et al., Insulin aspart (B28Asp-insulin): A fast-acting analog of human insulin, Absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects, Diabetes Care, 1999, 22: 1501–1506.

    Article  Google Scholar 

  11. Kaarsholm, N. C., Ludvigsen, S., The high resolution solution structure of the insulin monomer determined by NMR, Receptor, 1995, 5: 1–8.

    PubMed  CAS  Google Scholar 

  12. Chen, H., Shi, M., Guo, Z. Y. et al., Four new monomeric insulins obtained by alanine scanning the dimer-forming surface of the insulin molecule, Protein Eng., 2000, 13: 779–782.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Y., Liang, Z. H., Zhang, Y. S. et al., Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product, Biotechnology Bioengineering, 2001, 73: 74–79.

    Article  PubMed  CAS  Google Scholar 

  14. Stratton, J., Chiruvolu, V., Meagher, M., High cell-density fermentation, in Pichia Progocols (methods in molecular biology), Vol. 103 (eds. Higgins, D. R., Cregg, J. M.), Totawa, N. J.: Human Press, 1998, 107–120.

    Google Scholar 

  15. Brange, J., Ribel, U., Hansen, J. F. et al., Monomeric insulins obtained by protein engineering and their medical implications, Nature, 1988, 333: 679–681.

    Article  PubMed  CAS  Google Scholar 

  16. Liang, A. H., Liu, B., Tang, Y. H. et al., Protein engineering of insulin: [B9Glu, B10Asp] human insulin, Acta Biochim. Biophys. Simca, 1996, 28: 447–451.

    CAS  Google Scholar 

  17. Schwartz, G. P., Burke, G. T., Chanley, J. D. et al., An insulin analogue possessing higher in vitro biological activity than receptor binding affinity, Biochemistry, 1983, 22: 4561–4567.

    Article  PubMed  CAS  Google Scholar 

  18. Kono, T., Barham, F. W., The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells, J. Biol. Chem., 1971, 246: 6210–6216.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Youmin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Tang, Y., Yao, S. et al. Protein engineering of insulin: Two novel fast-acting insulins [B16Ala]insulin and [B26Ala]insulin. Sci. China Ser. C.-Life Sci. 46, 474–480 (2003). https://doi.org/10.1360/01yc0295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/01yc0295

Keywords

Navigation