Advertisement

Chinese Science Bulletin

, Volume 50, Issue 24, pp 2843–2849 | Cite as

Subcellular distribution and compartmentalization of arsenic in Pteris vittata L.

  • Tongbin Chen
  • Xiulan Yan
  • Xiaoyong Liao
  • Xiyuan Xiao
  • Zechun Huang
  • Hua Xie
  • Limei Zhai
Articles
  • 75 Downloads

Abstract

The subcellular distribution of arsenic (As) in Pteris vittata L., an As-hyperaccumulator, was studied to determine As compartmentalization and to explore the mechanisms that confer As tolerance. When the plant was grown in a nutrient solution without additional As, most of the accumulated As was isolated to the cell wall. However, in plants growing in a nutrient solution containing 0.1 or 0.2 mmol/L As, approximately 78% of the total As accumulated within the pinna. The proportions of As accumulation in the cytoplasmic supernatant fraction were 78% of that in the pinna and 61% of that in the plant. In either treatment group (0.1 or 0.2 mmol/L As), the fraction containing the lowest level of As was the organelle fraction. These results suggest that As accumulates in the pinna where it is primarily distributed in the cytoplasmic supernatant fraction. The role of As compartmentalization may be intricately linked with As detoxification in P. vittata L.

Keywords

arsenic (As) compartmentalization detoxification hyperaccumulator Pteris vittata L. subcellular distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry, W. L., Plant and factors influencing the use of plant analysis as a tool for biogeochemical prospecting, in Mineral Exploration: Biogeological Systems and Organic Matter (eds. Carlise D, Berry W L, Kaplan I R, et al.), New Jersey: Prentice-Hall, Englewood Cliffs, 1986, 5: 13.Google Scholar
  2. 2.
    Feed Additive Compendium (FAC), Munneapolis, America: Miller Publishing Company, 1975, 13: 330.Google Scholar
  3. 3.
    Chen, T. B., Wei, C. Y., Huang, Z. C. et al., Arsenic hyperaccumu- lator Pteris vittata L. and its arsenic accumulation, Chinese Science Bulletin, 2002, 47(11): 902–905.CrossRefGoogle Scholar
  4. 4.
    Ma, L. Q., Komar, K. M., Tu, C. et al., A fern that hyperaccumu- lates arsenic, Nature, 2001, 409: 579.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, T. B., Fan, Z. L., Lei, M. et al., Effect of phosphorus on ar- senic accumulation in As-hyperaccumulator Pteris vittata L. and its implication, Chinese Science Bulletin, 2002, 47(22): 1876–1879.CrossRefGoogle Scholar
  6. 6.
    Chen, T. B., Huang, Z. C., Huang, Y. Y. et al., Distributions of arse- nic and essential elements in pinna of arsenic hyperaccumulator Pteris vittata L., Science in China, Ser. C, 2005, 48(1): 13–19.Google Scholar
  7. 7.
    Huang, Z. C., Screening of arsenic hyperaccumulator and the study on its accumulation mechanisms, Dissertation for the Doctoral De- gree, Beijing: Institute of Geographical Sciences and Natural Re- sources Research, Chinese Academy of Science, 2003, 109 - 129.Google Scholar
  8. 8.
    Li, W. X., Chen, T. B., Chen, Y. et al., Role of trichome of Pteris vittata L. in arsenic hyperaccumulation, Science in China, Ser. C, 2005, 48(2): 148–154.Google Scholar
  9. 9.
    Caille, N., Zhao, F. J., McGrath, S. P., Comparison of root absorp- tion, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula, New Phytologist, 2005, 165(3): 755–761.PubMedCrossRefGoogle Scholar
  10. 10.
    Duan, G. L., Zhu, Y. G., Tong, Y. P. et al., Characterization of arse- nate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator, Plant Physiology, 2005, 138(1): 461–469PubMedCrossRefGoogle Scholar
  11. 11.
    Lombi, E., Zhao, F. J., Fuhrmann, M. et al., Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata, New Phytologist, 2002, 156: 195–203.CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Cai, Y., Tu, C. et al., Arsenic speciation and distribution in an arsenic hyperaccumulating plant, Science of the Total Envi- ronment, 2002, 300: 167–177.CrossRefGoogle Scholar
  13. 13.
    Chen, T. B., Huang, Z. C., Huang, Y. Y. et al., Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation, Chinese Science Bulle- tin, 2003, 48(15): 1586–1591.CrossRefGoogle Scholar
  14. 14.
    Liao, B., Deng, D. M., Yang B. et al., Subcellular distribution and chemical forms of Cu in Commelina communis, Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 2004, 43(2): 72–80.Google Scholar
  15. 15.
    Wan, M., Zhou, W., Lin, B., Subcelluar and molecular distribution of cadmium in two wheat genotypes differing in shoot/root Cd par- titioning, Scientia Agricultura Sinica (in Chinese), 2003, 36(6): 671–675.Google Scholar
  16. 16.
    Zhou, W., Wang, H., Lin, B., Effects of calcium supply on subcel- lular distribution of cadmium, chloroplast ultrastructure, RuBPC and PEPC activity in maize under cadmium stress, Plant Nutrition and Fertilizer Science, 1999, 5(4): 335–340.Google Scholar
  17. 17.
    Ni, T. H., Wei, Y. Z., Subcellular distribution of cadmium in mining ecotype Sedum alfredii, Acta Botanica Sinica, 2003, 45(8):925- 928.Google Scholar
  18. 18.
    Ramos, I., Elvira, E., Juan, J. L. et al., Cadmium uptake and sub- cellular distribution in plants of Lactuca sp. Cd-Mn interaction, Plant Science, 2002, 162: 761–767.CrossRefGoogle Scholar
  19. 19.
    Hans, J. W., Subcellular distribution and chemical form of cad- mium in bean plant, Plant Physiology, 1980, 46: 480–482.Google Scholar
  20. 20.
    Pathore, V. S., Bajat, Y. P. S, Wittwer, S. H., Subcellular localiza- tion of zinc and calcium in bean (Phaseolus vulgaris L.) tissues, Plant Physiology, 1972, 49: 207–211.Google Scholar
  21. 21.
    Liao, X. Y., Chen, T. B., Xie, H. et al., Effect of application of P fertilizer on efficiency of As removal in contaminated soil using phytoremediation: Field demonstration, Acta Scientiae Circumstan- tiae (in Chinese), 2003, 24(3):455–462.Google Scholar
  22. 22.
    Tu, C., Ma, L. Q., Bondada, B., Arsenic accumulation in the hy- peraccumulator Chinese brake and its utilization potential for phy- toremediation, Journal of Environmental Quality, 2002, 31: 1671 - 1675.PubMedCrossRefGoogle Scholar
  23. 23.
    Liao, X. Y., Chen, T. B., Lei, M. et al., Root distributions and ele- mental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils, Plant and Soil, 2004, 261(1-2): 109–116.CrossRefGoogle Scholar
  24. 24.
    Liao, X. Y., Xiao, X. Y., Chen, T. B., Effects of Ca and As on As, P and Ca uptake by hyperaccumulator Pteris vittata L. under sand culture, Acta Ecologica Sinica (in Chinese), 2003, 23(10): 2057- 2065.Google Scholar
  25. 25.
    Zheng, G. C., Cytobiology (in Chinese), 2nd ed., Beijing: Higher Education Press, 2000: 127.Google Scholar
  26. 26.
    Wang, L. J., Liu, Y. L., Vacuoles of plant cells and their physio- logical functions, Plant Physiology Letters (in Chinese), 1998, 34(5): 394–400Google Scholar
  27. 27.
    Hall, J. L., Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 2002, 53: 1–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Brooks, R. R., Shaw, S., Asensi, M. A., The chemical form and physiological function of nickel in some Iberian Alyssum species, Plant Physiology, 1981, 51: 167–170.CrossRefGoogle Scholar
  29. 29.
    Kramer, U., Pickering, I. J., Prince, R. C., Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species, Plant Physiology, 2000, 122: 1343–1353.PubMedCrossRefGoogle Scholar
  30. 30.
    Frey, B., Keller, C., Zierold, K. et al., Distribution of Zn in func- tionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens, Plant, Cell and Environment, 2000, 23(7): 675–687.CrossRefGoogle Scholar
  31. 31.
    Ernst, W. H. O., Verkleij, J. A. C., Schat, H., Metal tolerance in plants, Acta Botanica Neerlandica, 1992, 41: 229–248.Google Scholar
  32. 32.
    Hayens, R. J., Ion exchange properties of roots and ionic interac- tions within the root apoplasm: Their role in ion accumulation by plants, Botanical Review, 1980, 46: 75–99.CrossRefGoogle Scholar
  33. 33.
    Allen, D. L., Jarrell, W. M., Proton and copper adsorption to maize and soybean root cell walls, Plant Physiology, 1989, 89: 823–832.CrossRefGoogle Scholar
  34. 34.
    Turner, R. G., Marshall, C., The accumulation of zinc by subcellu- lar fractions of roots of Agrostis tenuis Sibth, in relation to zinc tol- erance, New Phytologist, 1972, 71: 671–675.CrossRefGoogle Scholar
  35. 35.
    Nishizono, H., Ichikawa, H., Suziki, S. et al., The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense, Plant and Soil, 1987, 101: 15–20.CrossRefGoogle Scholar
  36. 36.
    Boominathan, R., Doran, P. M., Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species, Journal of Biotechnology, 2003, 101: 131–146.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Tongbin Chen
    • 1
  • Xiulan Yan
    • 1
  • Xiaoyong Liao
    • 1
  • Xiyuan Xiao
    • 1
  • Zechun Huang
    • 1
  • Hua Xie
    • 1
  • Limei Zhai
    • 1
  1. 1.Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations