Advertisement

Chinese Science Bulletin

, Volume 50, Issue 21, pp 2448–2456 | Cite as

EEG-correlated fMRI of P3b component in P300 waves

  • Yuezhi LiEmail author
  • Liqun Wang
  • Mingshi Wang
Articles
  • 53 Downloads

Abstract

Electroencephalography-correlated functional magnetic resonance imaging (EEG/fMRI) can be used to identify blood oxygen level-dependent (BOLD) signal changes associated with both physiological and pathological EEG events. Here, we implemented continuous and simultaneous EEG/fMRI to identify BOLD signal changes related to P3b component of P300, and 64 channels of EEG were recorded in 11 subjects during Landot Ring task inside a 1.5 T functional magnet resonance (MR) scanner using an MR-compatible EEG recording system. Functional scanning by echoplanar imaging covered almost the entire cerebrum every 2 s, leaving gaps of 2 s without scanning. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data. Additionally, a P300 wave matched filter was constructed to inspect P300 wave occurrence following every target stimulus, target stimuli inspected to induce P300 were detected and their MRI scan number were then used as input for an event-related fMRI analysis. Finally MRI statistical parametric maps were constructed and corrected for multiple comparisons. By random effect group analysis, activations were detected in the right superior parietal lobule and bilaterally in inferior parietal lobule(p<0.001, uncorrected). The results demonstrated the upper regions were sources of P3b component and involved in target detection in memory comparison task.

Keywords

EEG-correlated fMRI P3b matched filter memory comparison task 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Picton, T. W., The P300 wave of the human event-related potential, J. Clin. Neurophysiol, 1992, 9: 456–479.CrossRefGoogle Scholar
  2. 2.
    Friedman, D., Kazmerski, V. A., Cycowicz, Y. M., Effects of aging on the novelty P3 during attend and ignore oddball tasks, Psychophysiology, 1998, 35: 508–520.CrossRefGoogle Scholar
  3. 3.
    Goldstein, A., Spencer, K. M., Donchin, E., The influence of the stimulus deviance and novelty on the P300 and Novelty P3, Psychophysiology, 2002, 39: 781–790.CrossRefGoogle Scholar
  4. 4.
    Spencer, K. M., Dien, J., Donchin, E., Spatiotemporal analysis of the late ERP responses to deviant stimuli, Psychophysiology, 2001, 38: 343–358.CrossRefGoogle Scholar
  5. 5.
    Courchesne, E., Hillyard, S. A., Galambos, R., Stimulus novelty, task relevance and the visual evoked potential in man, Electroencephalogr. Clin. Neurophysiol., 1975, 39: 131–143.CrossRefGoogle Scholar
  6. 6.
    Squires, N. K., Squires, K. C., Hillyard, S. A., Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man, Electroencephalogr. Clin. Neurophysiol., 1975, 38: 387–401.CrossRefGoogle Scholar
  7. 7.
    Barcelo, F., Perianez J., A., Knight, R. T., Think differently: A brain orienting response to task novelty, NeuroReport, 2002, 13: 1887–1892.CrossRefGoogle Scholar
  8. 8.
    Bruin, K. J., Wijers, A. A., Staveren, A.S., Response priming in a go/nogo task: Do we have to explain the go/nogo N2 effect in terms of response activation instead of inhibition? Clin. Neurophysiol., 2001, 112: 1660–1671.CrossRefGoogle Scholar
  9. 9.
    Courchesne, E., Hillyard, S. A., Galambos, R., Stimulus novelty, task relevance and the visual evoked potential in man, Electroencephalogr. Clin. Neurophysiol., 1975, 39: 131–143.CrossRefGoogle Scholar
  10. 10.
    Escera, C., Alho, K., Schroger, E. et al., Involuntary attention and distractibility as evaluated with event-related brain potentials, Audiol. Neuro-Otol., 2000, 5: 151–166.CrossRefGoogle Scholar
  11. 11.
    Friedman, D., Cycowicz, Y. M., Gaeta, H., The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty, Neurosci. Biobehav. Rev., 2001, 25: 355–373.CrossRefGoogle Scholar
  12. 12.
    Kok, A., On the utility of P3 amplitude as a measure of processing capacity, Psychophysiology, 2001, 38: 557–577.CrossRefGoogle Scholar
  13. 13.
    Hoffmann, A., Jager, L., Werhahn, K. J. et al., Electroencephalography during functional echo-planar imaging: Detection of epileptic spikes using post-processing methods, Magn. Reson. Med., 2000, 44: 791–798.CrossRefGoogle Scholar
  14. 14.
    Lemieux, L., Salek-Haddadi, A., Josephs, O. et al., Event-related fMRI with simultaneous and continuous EEG-description of the method and initial case report, NeuroImage, 2001, 14: 780–787.CrossRefGoogle Scholar
  15. 15.
    Salek-Haddadi, A., Lemieux, L., Fish, D. R., Role of functional magnetic resonance imaging in the evaluation of patients with malformations caused by cortical development, Neurosurg. Clin. N. Am., 2002, 13: 63–69.CrossRefGoogle Scholar
  16. 16.
    Robson, M. D., Dorosz, J. L., Gore, J. C., Measurements of the temporal fMRI response of the human auditory cortex to trains of tones, Neuroimage, 1998, 7: 185–198.CrossRefGoogle Scholar
  17. 17.
    Allen, P. J., Josephs, O., Turner, R., A method for removing imaging artifact from continuous EEG recorded during functional MRI, Neurolmage, 2000, 12: 230–239.CrossRefGoogle Scholar
  18. 18.
    Allen, P. J., Polizzi, G., Krakow, K. et al., Identification of EEG events in the MR scanner—The problem of pulse artifact and a method for its subtraction, Neurolmage, 1998, 8: 229–239.CrossRefGoogle Scholar
  19. 19.
    Stevens, A. A., Skudlarski, P., Christopher, J. et al., Event-related fMRI of auditory and visual oddball tasks, Magnetic Resonance Imaging, 2000, 18: 495–502.CrossRefGoogle Scholar
  20. 20.
    Fristen, K. J., Holmes, A. P., Worsley, K. P. et al., Statistical parametric maps in functional imaging: A general linear approach, Hum. Brain Map, 1995, 2: 189–210.CrossRefGoogle Scholar
  21. 21.
    Polich, J., Kok, A., Cognitive and biological determinants of P300: An integrative review, Biol. Psychol., 1995, 41: 103–146.CrossRefGoogle Scholar
  22. 22.
    Nunez, P. L., Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed., New York: ord University Press, 2002, 120.Google Scholar
  23. 23.
    Clark, V. P., Fannon, S., Lai, S. et al., Responses to rare visual target and distractor stimuli using event-related fMRI, J. Neurophysiol., 2000, 83: 3133–3139.Google Scholar
  24. 24.
    Kiehl, K. A., Liddle, P. F., An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia, Schizophr. Res., 2001, 48: 159–171.CrossRefGoogle Scholar
  25. 25.
    Linden, D. E. J., Prvulovic, D., Formisano, E. et al., The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks, Cereb. Cortex, 1999, 9: 815–823.CrossRefGoogle Scholar
  26. 26.
    McCarthy, G., Luby, M., Gore, J. et al., Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI, J. Neurophysiol., 1997, 77: 1630–1634.Google Scholar
  27. 27.
    Menon, Y., Ford, J. M., Lim, K. O. et al., Combined event-related fMRI and EEG evidence for temporalparietal cortex activation during target detection, Neuroreport, 1997, 8: 3029–3037.CrossRefGoogle Scholar
  28. 28.
    Opitz, B., Mecklinger, A., Friederici, A. D. et al., The functional neuroanatomy of novelty processing: integrating ERP and fMRI results, Cereb. Cortex, 1999, 9: 379–391.CrossRefGoogle Scholar
  29. 29.
    Stevens, A. A., Skudlarski, P., Gatenby, G. C. et al., Event-related fMRI of auditory and visual oddball tasks, Magn. Reson. Imaging, 2000, 18: 495–502.CrossRefGoogle Scholar
  30. 30.
    Yoshiura, T., Zhong, J., Shibata, D. K. et al., Functional MRI study of auditory and visual oddball tasks, Neuroreport, 1999, 10: 1683–1688.CrossRefGoogle Scholar
  31. 31.
    Clark, V. P., Maisog, J. M., Haxby, J. V., fMRI study of face perception and memory using random stimulus sequences, J. Neurophysiol., 1998, 79: 3257–3265.Google Scholar
  32. 32.
    Menon, V., Ford, J. H., Lim, K. O. et al., Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection, Neuroreport, 1997, 8: 3029–3037.CrossRefGoogle Scholar
  33. 33.
    Knight, R., Contribution of human hippocampal region to novelty detection, Nature, 1996, 383: 256–259.CrossRefGoogle Scholar
  34. 34.
    Tarkka, I. M., Stokic, D. S., Basile, L. F. H. et al., Electric source localization of the auditory P300 agrees with magnetic source localization, Electroencephalogr. Clin. Neurophysiol., 1995, 96(6): 538–545.CrossRefGoogle Scholar
  35. 35.
    Merboldt, K. D., Fransson, P., Bruhn, H. et al., Functional MRI of the human amygdala? Neuroimage, 2001, 14: 253–257.CrossRefGoogle Scholar
  36. 36.
    Liddle, P. F., Kiehl, K. A., Smith, A. M., Event-related fMRI study of response inhibition, Hum. Brain Map, 2001, 12: 100–109.CrossRefGoogle Scholar
  37. 37.
    Ruff, C. C., Woodward, T. S., Laurens, K. R. et al., The role of the anterior cingulate cortex in conflict processing: evidence from reverse stroop interference, Neuroimage, 2001, 14: 1150–1158.CrossRefGoogle Scholar
  38. 38.
    Downar, J., Crawley, A. P., Mikulis, D. J. et al., The effect of task relevance on the cortical response to changes in visual and auditory stimuli: An event-related fMRI study, Neuroimage, 2001, 14: 1256–1267.CrossRefGoogle Scholar
  39. 39.
    Ardekani, B. A., Choi, S. J., Hossein-Zadeh, G. et al., Functional magnetic resonance imaging of brain activity in the visual oddball task, Cognitive Brain Research, 2002, 14: 347–356.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.College of Engineering and TechnologyShenzhen UniversityShenzhenChina
  2. 2.College of Precision Instrument and Opto-electronics EngineeringTianjin UniversityTianjinChina
  3. 3.Applied Superconductivity Research LaboratoryTokyo Denki UniversityChibaJapan

Personalised recommendations