Science in China Series A: Mathematics

, Volume 48, Issue 3, pp 300–306 | Cite as

Local asymptotic behavior of the survival probability of the equilibrium renewal model with heavy tails



Recently, Tang established a local asymptotic relation for the ruin probability in the Cramér-Lundberg risk model. In this short note we extend the corresponding result to the equilibrium renewal risk model.


geometric sums heavy-tailed distribution ladder height the equilibrium renewal model the ruin probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Embrechts, P., Klüppelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance, Berlin: Springer-Verlag, 1997.MATHGoogle Scholar
  2. 2.
    Ross, S. M., Stochastic Processes, New York: John Wiley & Sons, Inc., 1983.MATHGoogle Scholar
  3. 3.
    Grandell, J., Aspects of Risk Theory, New York: Springer-Verlag, 1991.MATHGoogle Scholar
  4. 4.
    Rolski, T., Schmidli, H., Schmidt, V., Teugels, J., Stochastic Processes for Insurance and Finance, John Wiley & Sons, Ltd., Chichester, 1999.MATHGoogle Scholar
  5. 5.
    Willmot, G. E., Dickson, D. C. M., The Gerber-Shiu discounted penalty function in the stationary renewal risk model, Insurance: Mathematics and Economics, 2003, 32(3): 403–411.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Tang, Q. H., An asymptotic relationship for ruin probabilities under heavy-tailed claims, Science in China, Ser. A, 2002, 45(5): 632–639.MATHGoogle Scholar
  7. 7.
    Asmussen, S., Ruin Probabilities, River Edge, NJ: World Scientific Publishing Co., Inc., 2000.Google Scholar
  8. 8.
    Klüppelberg, C., Subexponential distributions and integrated tails, J. Appl. Probab., 1988, 25(1): 132–141.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Embrechts, P., Veraverbeke, N., Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1982, 1: 55–72.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kong, F. C., Cao, L., Wang, J. L. et al., Ruin probabilities for large claims in equilibrium renewal model, Chinese Ann. Math. Ser. A (in Chinese), 2002, 23(4): 531–536.MATHMathSciNetGoogle Scholar
  11. 11.
    Tang, Q. H., Extremal Values of Risk Processes for Insurance and Finance: with Special Emphasis on the Possibility of Large Claims, Doctoral thesis of the University of Science and Technology of China, 2001.Google Scholar
  12. 12.
    Asmussen, S., Kalashnikov, V., Konstantinides, D. et al., A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett., 2002, 56(4): 399–404.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Asmussen, S., Foss, S., Korshunov, D. A., Asymptotics for sums of random variables with local subexponential behaviour, J. Theor. Probab., 2003, 16(2): 489–518.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ng, K. W., Tang, Q. H., Asymptotic behavior of tail and local probabilities for sums of subexponential random variables, J. Appl. Probab., 2004, 41(1): 108–116.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., New York: Wiley, 1971.Google Scholar
  16. 16.
    Veraverbeke, N., Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic Processes Appl., 1977, 5(1): 27–37.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kalashnikov, V., Two-sided bounds of ruin probabilities, Scand. Actuar. J., 1996, 1: 1–18.MathSciNetGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.School of FinanceNanjing University of Finance and EconomicsNanjingChina
  2. 2.School of Economics and ManagementGuangdong University of TechnologyGuangzhouChina

Personalised recommendations