Advertisement

Science in China Series D: Earth Sciences

, Volume 48, Issue 6, pp 742–751 | Cite as

A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake

  • Shen Ji 
  • Xingqi LiuEmail author
  • Matsumoto Ryo
  • Sumin Wang
  • Xiangdong Yang
Article

Abstract

Based on multi-proxy analysis of pollen, carbonate, TOC, TN and δ 13C of organic matters, a high-resolution climatic evolution of Qinghai Lake since the Late Glacial Age is reconstructed. The results indicate that the boundary between the Last Glacial Maximum and the Late Glacial Age is at about 18.2 cal.ka BP. The warm and wet period, which began at about 15.4 cal.ka BP, culminated at 7.4 cal.ka BP and came to its end at about 4.5 cal.ka BP. After that, the climate gradually became cold and dry. The multi-proxy analysis indicates that the climate fluctuated greatly during the transitional period from the Late glacial Age to the Holocene, and this is in good accordance with that reflected by deep sea cores of North Atlantic, ice cores of Greenland, lake sediments in Europe, loess sequences and Guliya ice core in China. The climatic evolutional characteristic of the Qinghai Lake since the Late Glacial Age shows that the driving force of the East-Asia Monsoon correlates with solar radiation on the ten-thousand-year scale.

Keywords

Qinghai Lake Late-Glacial Age to Holocene multi-proxy analysis high-resolution palaeoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinrich, H., Origin and consequence of cyclic ice rafting in the northeast Atlantic Ocean during the past 130000 years, Quaternary Research, 1988, 29: 142–152.CrossRefGoogle Scholar
  2. 2.
    Bond, G., Heinrich, H., Broecker, W. S. et al., Evidence for mas-sive discharges of icebergs into North Atlantic Ocean during the last glacial period, Nature, 1992, 360: 245–249.CrossRefGoogle Scholar
  3. 3.
    Bond, G., Showers, W., Cheseby, M. et al., A pervasive millen-nial-scale cycle in north Atlantic Holocene and glacial climates, Science, 1997, 278: 1257–1266.CrossRefGoogle Scholar
  4. 4.
    Grafenstein, U.V., Erlenkeuser, H., Brauer, A. et al., A mid- european decadal isotope-climate record from 15500-5000 years, Science, 1999, 284: 1654–1657.CrossRefGoogle Scholar
  5. 5.
    Pokorn, P., A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in the Czech Republic, Quaternary International, 2002, 91: 101–122.CrossRefGoogle Scholar
  6. 6.
    Velichkoa, A. A., Cattob, N., Drenovaa, A. N. et al., Climate changes in East Europe and Siberia at the Late Glacial-ltolocene transition, Quaternary International, 2002, 91: 75–99.CrossRefGoogle Scholar
  7. 7.
    Stuiver, M., Grootes, P. M., Braziunas, T. F., The GISP2 climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes, Quat. Res., 1995, 44: 254–341.CrossRefGoogle Scholar
  8. 8.
    Grootes, P. M., Stuiver, M., White, J. W. C. et al., Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 1993, 366: 552–554.CrossRefGoogle Scholar
  9. 9.
    O’Brien, S. R., Mayewski, P. A., Meeker, L. D. et al., Complexity of Holocene climate as reconstructed from a Greenland ice core, Science, 1995, 270: 1962–1964.CrossRefGoogle Scholar
  10. 10.
    Wang, J. M., Shi, Q., Chen, F. H. et al., Rapid oscillations of Chi-nese monsoon climate since the last deglaciation and its compari-son with GISP2 record, Chinese Science Bullettin, 1999, 44(3): 284–286.CrossRefGoogle Scholar
  11. 11.
    Yao, T. D., Thompson, L.G., Shi, Y. F. et al., Climate variation since the last interglacial recorded in the Guliya ice core, Science in China, Ser. D, 1998, 40(60): 662–668.Google Scholar
  12. 12.
    Porter, S. C., An, Z. S., Correlation between climate events in the North-Atlantic and China during last glaciation, Nature, 1995, 375: 305–308.CrossRefGoogle Scholar
  13. 13.
    Chen, F. H., Zhu, Y., Li, J. J. et al., Abrupt Holocene changes of the Asian monsoon at millennial and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China, Chi-nese Science Bulletin, 2001, 46(23), 1942–1949.CrossRefGoogle Scholar
  14. 14.
    Shi Y. F., Kong Z. C., Wang S. M. et al., The climatic fluctua-tion and important events of Holocene Megathermalin China, Science in China, Ser. B (in Chinese), 1994, (12): 1300–1308.Google Scholar
  15. 15.
    Yang, H. Q., Jiang, D. X., Pollen assemblage and its implication in Quaternary period of Qinghai Lake Basin, Acta Geographica Sinica (in Chinese), 1965, 31(4): 321–344.Google Scholar
  16. 16.
    Du, N. Q., Kong, Z. C., Shan, F. S., A preliminary investigation on the vegetational and climatic changes since 11,000 years in Qing-hai Lake-an analysis based on palynology in core QH85-14C, Acta Botanica Sinica (in Chinese with English abstract), 1989, 31(10): 803–814.Google Scholar
  17. 17.
    Wang, S. M., Shi, Y. F., Review and discussion on the late Qua-ternary evolution of Qinghai Lake, Journal of Lake Sciences (in Chinese with English abstract), 1992, 4(3): 1–8.Google Scholar
  18. 18.
    Zhang, P. X., Zhang, B. Z., Qian, G. M. et al., The studies on pa-leoclimatic parameters of Qinghai Lake, Quaternary Sciences (in Chinese with English abstract), 1994, 3: 225–237.Google Scholar
  19. 19.
    Huang, Q., Preliminary studies on accumulation rate of sediment and paleoclimatic evolution in Qinghai Lake, Chinese Science Bulletin (in Chinese), 1988, 32(22): 1740–1744.Google Scholar
  20. 20.
    Lanzhou Brance of Chinese Academy of Sicences (CAS), The Scientific Center for Resources and Environment in West China, CAS, Evolution of Recent Environment in Qinghai Lake and Its Prediction (in Chinese), Beijing: Science Press, 1994, 225–239.Google Scholar
  21. 21.
    Lister, G. S., Kelts, K., Chen, K. Z. et al., Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostra-coda since the last Pleistocene, Palaeogeography, Palaeoclimatol- ogy, Palaeoecology, 1991, 84: 141–162.CrossRefGoogle Scholar
  22. 22.
    Liu, X. Q., Shen, J., Wang, S. M. et al., A 16000-year pollen re-cord of Qinghai Lake and its paleoclimate and paleoenvironment, Chinese Science Bulletin, 2002, 47(22), 1931–1937.CrossRefGoogle Scholar
  23. 23.
    Stuiver, M., Reimer, P. J., Braziunas, T. F., High precision radio-carbon age calibration for terrestrial and marine samples, Radio-carbon, 1998, 40: 1127–1151.Google Scholar
  24. 24.
    Wu, B., Zhang, G. D., Xu, C. Z., X-ray diffraction quantitative analysis for non-clay minerals within sea-floor silts from South China Sea, Journal of Nanjing University (Earth Sciences)(in Chi-nese with English abstract), 1992, 4(4): 79–83.Google Scholar
  25. 25.
    Pitzer, K. S., Thermodynamics of electrolytes.1.Theroretical basis and general equations, Journal of Physical Chemistry, 1973, 77: 268–277.CrossRefGoogle Scholar
  26. 26.
    Liu, X. Q., Shen, J., Wang, S. M. et al., A 16000-year paleoclimatic record derived from autogenetic carbonate of lacustrine sediment in Qinghai Lake, Geological Journal of China Universities (in Chinese with English abstract), 2003, 9(1): 38–46.Google Scholar
  27. 27.
    Shen, J., Wang, S. M., Yang, X. D., Measurement of organic car-bon stable isotope in lacustrine sediments and its significance on palaeoclimate and environment, Oceanologia et Limnologia Sinica (in Chinese with English abstract), 1996, 27(4): 400–404.Google Scholar
  28. 28.
    Stuiver, M., Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary, Quat. Res., 1975, 5: 251–262.CrossRefGoogle Scholar
  29. 29.
    Krishnamurthy, R. V., Bhattacharya, S. K., Kusumgar, S., Palaeo-climatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India, Nature, 1986, 323: 150–152.CrossRefGoogle Scholar
  30. 30.
    Smith, B. N., Epstein, S., Two categories of 13C/12C for high plants, Plant Physiology, 1971, 43: 380–384.Google Scholar
  31. 31.
    Street-Perrott, F. A., Huang, Y. S., Perrott, R. A. et al., Impact of lower atmospheric carbon dioxide on tropical mountain ecosys-tems, Science, 1997, 278: 1422–1426.CrossRefGoogle Scholar
  32. 32.
    Meyers, P., Horie, S., An organic carbon isotopic of gla- cial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan, Palaeogeography, Palaeoclimatology, Pa-laeoecology. 1993, 105: 171–178.CrossRefGoogle Scholar
  33. 33.
    Berger, A., Loutre, M. F., Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 1991, 10: 297–317.CrossRefGoogle Scholar
  34. 34.
    Wang, K. F., Wang, X. Z., The Principle of Palynology (in Chi-nese), Beijing: Peking University Press, 1983, 9–10.Google Scholar
  35. 35.
    Liu, X. Q., Wang, S. M., Shen, J., The Grainsize of the core QH-2000 in Qinghai Lake and its implication for paleoclimate and Paleoenvironment, Journal of Lake Sciences (in Chinese with English abstract), 2003, 15(2): 112–117.Google Scholar
  36. 36.
    Neftel, A., Oeschger, H., Schwander, J. et al., Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr, Nature, 1982, 295: 220–223.CrossRefGoogle Scholar
  37. 37.
    Barnola, J. M., Raynaud, D., Korotkevich, Y. S. et al., Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 1987, 329: 408–414.CrossRefGoogle Scholar
  38. 38.
    Petit, J. R., Jouzel, J., Raynaud, D. et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Ant-arctica, Nature, 1999, 399: 429–436.CrossRefGoogle Scholar
  39. 39.
    Morrow, D. W., The chemistry of dolomitization and dolomite deposit, Oversea Geology (in Chinese), 1984, 4: 12–20.Google Scholar
  40. 40.
    Lu, H. Y., Gu, Z.Y., Wu, N. Q. et al., Effect of altitude on the or-ganic carbon isotope composition on modern surface soils from Qinghai-Xizang Plateau, Quaternary Sciences (in Chinese with English abstract), 2001, 21(5): 399–406.Google Scholar
  41. 41.
    Wang, L. L., Yao, T. D., Thompson, L. G. et al., Evidence for cold events in the early Holocene from the Guliya ice core, Tibetan Plateau, China, Chinese Science Bulletin, 2002, 47(17): 1422–1427.CrossRefGoogle Scholar
  42. 42.
    Alley, B. R., Mayewski, A. P., Sowers, T. et al., Holocene cli-matic instability: A prominent, widespread event 8200 yr ago, Geology, 1997, 25(6): 483–486.CrossRefGoogle Scholar
  43. 43.
    Song, C. Q., Sun, X. J., Establishment of transfer functions of the pollen-climatic factors in Northern China and the Quantitative climatic reconstruction at DJ core, Acta Botanica Sinica (in Chi-nese with English abstract), 1997, 39(6): 554–560.Google Scholar
  44. 44.
    de Menocal, P., Joseph, O., Tom, G. et al., Coherent high- and low-latitude climate variability during the Holocene warm period, Science, 2000, 288(23): 2198–2202.CrossRefGoogle Scholar
  45. 45.
    Karin, A. F., Gerald, G., Simon, G. et al., Mechanisms forcing abrupt fluctuations of the Indian Ocean summer monsoon during the last deglaciation, Quaternary Science Reviews, 1997, 16: 187–201.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Shen Ji 
    • 1
  • Xingqi Liu
    • 1
    Email author
  • Matsumoto Ryo
    • 2
  • Sumin Wang
    • 1
  • Xiangdong Yang
    • 1
  1. 1.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.Geology InstituteTokyo UniversityTokyoJapan

Personalised recommendations