Science in China Series C: Life Sciences

, Volume 47, Issue 2, pp 107–114 | Cite as

Regulation of apoptotic signal transduction pathways by the heat shock proteins

  • Zhengyu Li
  • Xia Zhao
  • Yuquan Wei


The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.


heat shock protein apoptotic signal transduction molecular chaperone caspases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ritossa, F., A new puffing pattern induced by heat shock and DNP in Drosophila, Experientia, 1962, 18: 571–573.CrossRefGoogle Scholar
  2. 2.
    Wei, Y. Q., Zhao, X., Kariya, Y. et al., Induction of apoptosis by quercetin: Involvement of heat shock protein, Cancer Research, 1994, 54(18): 4952–4957.PubMedGoogle Scholar
  3. 3.
    Wei, Y. Q., Zhao, X., Kariya, Y. et al., Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP)70 expression in tumor cells, Cancer Immunol. Immunother., 1995, 40(2): 73–78.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao, X., Wei, Y. Q., Increase in the thermosensitivity of cervical cancer and ovarian cancer cells by HSP70 antisense oligodeoxynucleotides, Chinese J. Oncology, 2000, 22(2): 99–101.Google Scholar
  5. 5.
    Zhao, X., Wei, Y. Q., Peng, Z. L., Induction of apoptosis in ovarian carcinoma cells by HSP70 antisense oligodeoxynucleotides, Chinese J. Medical Genetics, 2000, 17(1): 32–35.Google Scholar
  6. 6.
    Kojika, S., Sugita, K., Inukai, T. et al., Mechanisms of glucocorticoid resistance in human leukemic cells: Implication of abnormal 90 and 70 kDa heat shock proteins, Leukemia, 1996, 10(6): 994–999.PubMedGoogle Scholar
  7. 7.
    Kim, S. H., Yeo, G. S., Lim, Y. S. et al., Suppression of multidrug resistance via inhibition of heat shock factor by quercetin in MDR cells, Exp. Mol. Med., 1998, 30(2): 87–92.PubMedGoogle Scholar
  8. 8.
    Ellis, R. J., The general concept of molecular chaperones, Philos. Trans. R Soc. Lond. B Biol. Sci., 1999, 339(1289): 257–261.Google Scholar
  9. 9.
    Wynn, R. M., Davie, J. R., Cox, R. P., et al., Molecular chaperones: Heat-shock proteins, foldases, and matchmakers, J. Lab. Clin. Med., 1994, 124(1): 31–36.PubMedGoogle Scholar
  10. 10.
    Neckers, L., Schulte, T. W., Mimnaugh, E., Geldanamycin as a potential anticancer agent: Its molecular target and biochemical activity, Invest New Drugs, 1999, 17(4): 361–733.PubMedCrossRefGoogle Scholar
  11. 11.
    Munster, P. N., Marchion, D. C., Basso, A. D. et al., Degradation of HER2 by ansamycins induces growth and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′-kinase-AKT-dependent pathway, Cancer Res., 2002, 62(11): 3132–3137.PubMedGoogle Scholar
  12. 12.
    Blagosklonny, M. V., Hsp-90-associated oncoproteins: Multiple targets of geldanamycin and its analogs, Leukemia, 2002, 16(4): 455–462.PubMedCrossRefGoogle Scholar
  13. 13.
    Munster, P. N., Srethapakdi, M., Moasser, M. M. et al., Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells, Cancer Research, 2001, 61(7): 2945–2952.PubMedGoogle Scholar
  14. 14.
    Hostein, I., Robertson, D., Distefano, F. et al., Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis, Cancer Research, 2001, 61(10): 4003–4009.PubMedGoogle Scholar
  15. 15.
    Kischkel, F. C., Hellbardt, S., Behrmann, I. et al., Cytotoxicitydependent APO-1(Fas/CD95)-associated proteins form a deathinducing signaling complex (DISC) with the receptor, EMBO J., 1995, 10(22): 5579–5588.Google Scholar
  16. 16.
    Chang, H. Y., Nishitoh, H., Yang, X. et al., Activation of apoptosis signal-regulating kinase (ASK1) by the adapter protein Daxx, Science, 1998, 281(5384): 1860–1863.PubMedCrossRefGoogle Scholar
  17. 17.
    Charette, S. J., Lavoie, J. N., Lambert, H. et al., Inhibition of Daxx-mediated apoptosis by heat shock protein 27, Mol. Cell Biol., 2000, 20(20): 7602–7612.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer, M. K., Vogt, M., Los, M. et al., Role of reactive oxygen intermediates in activation-induced CD95(APO-1/Fas) ligand expression, J. Biol. Chem., 1998, 273(14): 8048–8055.PubMedCrossRefGoogle Scholar
  19. 19.
    Van den Dobbelsteen, D. J., Nobel, C. S., Schlegel, J. et al., Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody, J. Biol. Chem., 1996, 271(26): 15420–15427.PubMedCrossRefGoogle Scholar
  20. 20.
    Mehlen, P., Kretz-Remy, C., Preville, X. et al., Human hsp27, Drosophila hsp27 and human alpha B-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF alpha-induced cell death, EMBO J., 1996, 15(11): 2695–2706.PubMedGoogle Scholar
  21. 21.
    Creagh, E. M., Cotter, T. G., Selective protection by hsp70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis, Immunology, 1999, 97(1): 36–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Liossis, S. N., Ding, X. Z., Kiang, J. G. et al., Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/APO-1/CD95-mediated apoptotic cell death in Jurkat T cells, J. Immunol., 1997, 158(12): 5668–5675.PubMedGoogle Scholar
  23. 23.
    Jaattlela, M., Overexpression of major heat shock protein hsp70 inhibits tumor necrosis factor-induced activation of phospholipase A2, J. Immunol., 1993, 151(8): 4286–4294.Google Scholar
  24. 24.
    Galea, L. J., Richardson, A. J., Latchman, D. S. et al., Increased heat shock protein 90(hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: A possible role in immunopathology, J. Immunol., 1996, 157(9): 4109–4118.Google Scholar
  25. 25.
    Xia, W., Voellmy, R., Spector, N. L., Sensitization of tumor cells to fas killing through overexpression of heat shock transcription factor 1, J. Cell Physiol., 2000, 183(3): 425–431.PubMedCrossRefGoogle Scholar
  26. 26.
    Schett, G., Steiner, C. W., Groger, M. et al., Activation of Fas inhibits heat-induced activation of HSF-1 and up-regulation of hsp70, FASEB J., 1999, 13(8): 833–842.PubMedGoogle Scholar
  27. 27.
    Fuchs, S. Y., Adler, V., Pincus, M. R. et al., MEKK1/JNK signaling stabilizes and activates p53, Proc. Natl. Acad. Sci. USA, 1998, 95(18): 10541–0546.PubMedCrossRefGoogle Scholar
  28. 28.
    Noguchi, K., Kitanaka, C., Yamana, H. et al., Regulation of c-myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase, J. Biol. Chem., 1999, 274(46): 32580–32587.PubMedCrossRefGoogle Scholar
  29. 29.
    Tournier, C., Hess, P., Yang, D. D. et al., Requirement of JNK for stress-induced activation of the cytochrome C-mediated death pathway, Science, 2000, 288(5467): 870–874.PubMedCrossRefGoogle Scholar
  30. 30.
    Fan, M., Goodwin, M., Vu, T. et al., Vinblastine-induced phosphorylation of Bcl-2 and Bcl-Xl is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade, J. Biol. Chem., 2000, 275(39): 29980–29985.PubMedCrossRefGoogle Scholar
  31. 31.
    Kitamura, C., Ogawa, Y., Nishihara, T. et al., Transient co-localization of c-Jun N-terminal kinase and c-Jun with heat shock protein 70 in pulp cells during apoptosis, J. DentRes., 2003, 82(2): 91–95.Google Scholar
  32. 32.
    Mosser, D. D., Caron, A. W., Bourget, L. et al., Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis, Mol. Cell Biol., 1997, 17(9): 5317–5327.PubMedGoogle Scholar
  33. 33.
    Gabai, V. L., Meriin, A. B., Mosser, D. D. et al., Hsp70 prevents activation of stress kinases: A novel pathway of cellular thermotolerance, J. Biol. Chem., 1997, 272(29): 18033–18037.PubMedCrossRefGoogle Scholar
  34. 34.
    Park, H. S., Lee, J. S., Huh, S. H. et al., Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase, EMBO J., 2001, 20(3): 446–456.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, Y. J., Corry, P. M., Metabolic oxidative stress-induced hsp70 gene expression is mediated through SAPK pathway—Role of Bcl-2 and c-Jun NH2-terminal kinase, J. Biol. Chem., 1998, 273(45): 29857–29863.PubMedCrossRefGoogle Scholar
  36. 36.
    Meriin, A. B., Yaglom, J. A., Gabai, V. L. et al., Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: A novel pathway controlled by hsp72, Mol. Cell Biol., 1999, 19(4): 2547–2555.PubMedGoogle Scholar
  37. 37.
    Volloch, V., Gabai, V. L., Rits, S. et al., ATPase activity of the heat shock protein Hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat induced apoptosis, FEBS Lett., 1999, 461(1–2): 73–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Yaglom, J. A., Gabai, V. L., Meriin, A. B. et al., The function of HSP72 in suppression of c-Jun N-terminal kinase activation can be dissociated from its role in prevention protein damage, J. Biol. Chem., 1999, 274(29): 20223–20228.PubMedCrossRefGoogle Scholar
  39. 39.
    Gabai, V. L., Mabuchi, K., Mosser, D. D. et al., Hsp72 and stress kinase c-Jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis, Mol. Cell Biol., 2002, 22(10): 3415–3424.PubMedCrossRefGoogle Scholar
  40. 40.
    Mosser, D. D., Caron, A. W., Bourget, L. et al., The chaperone function of hsp70 is required for protection against stress induced apoptosis, Mol. Cell Biol., 2000, 20(19): 7146–7159.PubMedCrossRefGoogle Scholar
  41. 41.
    Bratton, S. B., Marfarlane, M., Cain, K. et al., Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis, Exp. Cell Res., 2000, 256(1): 27–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Wolf, B. B., Green, D. R., Suicidal tendencies: Apoptotic cell death by caspase family proteinases, J. Biol. Chem., 1999, 274(29): 20049–20052.PubMedCrossRefGoogle Scholar
  43. 43.
    Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. et al., Mammalian caspases: Structure, activation, substrates and functions during apoptosis, Annu. Rev. Biochem., 1999, 68: 383–424PubMedCrossRefGoogle Scholar
  44. 44.
    Bruey, J. M., Ducasse, C., Bonniaud, P. et al., Hsp27 negatively regulates cell death by interacting with cytochrome C, Nat. Cell Biol., 2000, 2(9): 645–652.PubMedCrossRefGoogle Scholar
  45. 45.
    Beere, H. M., Wolf, B. B., Cain, K. et al., Heat shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome, Nat. Cell Biol., 2000, 2(8): 469–475.PubMedCrossRefGoogle Scholar
  46. 46.
    Saleh, A., Srinivasula, S. M., Balkir, L. et al., Negative regulation of the Apaf-1 apoptosome by Hsp70, Nat. Cell Biol., 2000, 2(8): 476–483.PubMedCrossRefGoogle Scholar
  47. 47.
    Pandey, P., Saleh, A., Nakazawa, A. et al., Negative regulation of cytochrome C-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90, EMBO J., 2000, 19(16): 4310–4322.PubMedCrossRefGoogle Scholar
  48. 48.
    Nimmanapalli, R. O., Bryan, E., Bhalla, K., Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts, Cancer Research, 2001, 61(5): 1799–1804.PubMedGoogle Scholar
  49. 49.
    Kamradt, M. C., Chen, F., Cryns, V. L., The small heat shock protein alpha B-crystallin negatively regulates cytochrome C- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation, J. Biol. Chem., 2001, 276(19): 16059–16063.PubMedCrossRefGoogle Scholar
  50. 50.
    Xanthoudakis, S., Roy, S., Rasper, D. et al., Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis, EMBO J., 1999, 18(8): 2049–2056.PubMedCrossRefGoogle Scholar
  51. 51.
    Samali, A., Cai, J., Zhivotovsky, B. et al., Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells, EMBO J., 1999, 18(8): 2040–2048.PubMedCrossRefGoogle Scholar
  52. 52.
    Gerhard, M. C., Schmid, R. M., Hacker, G., Analysis of the cytochrome C-dependent apoptosis apparatus in cells from human pancreatic carcinoma, British J. Cancer, 2002, 86(6): 893–898.CrossRefGoogle Scholar
  53. 53.
    Nicholson, D. W., Ali, A., Thornberry, N. A. et al., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature, 1995, 376(6535): 37–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Freeman, B. C., Myers, M. P., Schumacher, R. et al., Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1, EMBO J., 1995, 14(10): 2281–2292PubMedGoogle Scholar
  55. 55.
    Creagh, E. M., Carmody, R. J., Cotter, T. G., Hsp70 inhibits caspase-dependent and independent apoptosis in Jurkat T cells, Exp. Cell Res., 2000, 257(1): 58–66.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Department of Gynecology and ObstetricsWest China Second Hospital of Sichuan UniversityChengduChina
  2. 2.Key Laboratory of Biotherapy of Human Diseases of Ministry of EducationWest China Hospital of Sichuan universityChengduChina

Personalised recommendations