Advertisement

Chinese Science Bulletin

, Volume 47, Issue 22, pp 1876–1879 | Cite as

Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication

  • Tongbin Chen
  • Zhilian Fan
  • Mei Lei
  • Zechun Huang
  • Chaoyang Wei
Notes

Abstract

Pot experiment was conducted to understand the effect of phosphorus on arsenic accumulation in As-hyperaccumulator Chinese brake (Pteris vittata L.). It is shown that arsenic concentrations in the fronds and rhizoids, the arsenic bioaccumulation factor, and the total arsenic in the fronds were not influenced significantly under low levels of phosphorus (≤400 mg/kg) and increased sharply under high levels of phosphorus (>400 mg/ kg). The discovery implies that the efficiency of arsenic removal in phytoremediation using the hyperaccumulating plant can be greatly elevated by the phosphorus addition at high rates. The interaction between the accumulation of phosphorus and that of arsenic in plant was stimulated mutually. The result represents that Chinese brake is a good material for plant physiologist to conduct comparative and mechanism studies on the uptake behaviors of phosphorus and arsenic, and phosphorus is also a potential accelerator for phytoremediation of arsenic-contaminated soils.

Keywords

Chinese brake (Pteris vittata L.) hyperaccumulator arsenic phosphorus accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, T. B., Wei, C. Y., Huang, Z. C. et al., Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation, Chinese Science Bulletin, 2002, 47(11): 902.CrossRefGoogle Scholar
  2. 2.
    Wei, C. Y., Chen, T. B., Huang, Z. C. et al., Cretan brake (Pteris cretica L.): An arsenic-accumulating plant (in Chinese), Acta Ecologica Simca, 2002, 22(5): 777.Google Scholar
  3. 3.
    Sharpies, J. M., Meharg, A. A., Chambers, S. M. et al., Arsenate sensitivity in ericoid and ectomycorrhizal fungi, Environ. Toxic. and Chem., 1999, 18(8): 1848.CrossRefGoogle Scholar
  4. 4.
    Koseki, K., Suppression of arsenic injury of rice plants by the application of higher phosphate concentration in culture solution, Scientific Reports of the Miyagi Agricultural College, 1988, 36: 15.Google Scholar
  5. 5.
    Meharg, A. A., Macnair, M. R., An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L, New Phytol., 1990, 116(1): 29.CrossRefGoogle Scholar
  6. 6.
    Meharg, A. A., Bailey, J., Breadmore, K. et al., Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate, Plant and Soil, 1994, 160(1): 11.CrossRefGoogle Scholar
  7. 7.
    Meharg, A. A., Macnair, M. R., Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L., J of Experimental Botany, 1992, 43(249): 519.CrossRefGoogle Scholar
  8. 8.
    Liu, S. G., Physical and Chemical Analysis of Soil and Profile Description (in Chinese), Beijing: China Standard Press, 1996: 83–85.Google Scholar
  9. 9.
    Nanjing Agricultural University, Agricultural Chemistry Analysis of Soil (in Chinese), 2nd ed., Beijing: China Agricultural Press, 2000: 65–83.Google Scholar
  10. 10.
    Gebel, T. W., Arsenic and drinking water contamination, Science, 1999, 283(5407): 1455.CrossRefGoogle Scholar
  11. 11.
    Anonymous, Bangladesh’s poisoned wells, Nature, 2001, 413: 551.Google Scholar
  12. 12.
    Chen, T. B., Wei, C. Y., China Patent, 0120519.9, 2001-07-18.Google Scholar
  13. 13.
    Meharg, A. A., Naylor, J., Macnair, M. R., Phosphorus nutrition of arsenate-tolerant and nontolerant phenotypes of velvetgrass, J. Environ. Qual., 1994, 23(2): 234.CrossRefGoogle Scholar
  14. 14.
    Brolo, F., Guijarro, L., Carbonell-Barrachina, A. A. et al., Arsenic species: Effects on and accumulation by tomato plants, J. Agric. Food. Chem., 1999, 47(3): 1247.CrossRefGoogle Scholar
  15. 15.
    Sharpies, J. M., Meharg, A. A., Chambers, S. M. et al., Evolution: symbiotic solution to arsenic contamination, Nature, 2000, 404: 951.Google Scholar
  16. 16.
    Asher, C. J., Reay, P. F., Arsenic uptake by barley seedlings, Aust J. of Plant Physiol., 1979, 6(4): 459.CrossRefGoogle Scholar
  17. 17.
    Lin, H. C., Problems of soil arsenic: a study based on soilchemical and plant-nutritional aspects, Memoirs of the College of Agriculture, National Taiwan University, 1977, 11(2): 1.Google Scholar
  18. 18.
    Khattak, R. A., Page, A. L., Parker, D. R. et al., Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus, J. of Environ. Qual., 1991, 20(1): 165.Google Scholar

Copyright information

© Science in China Press 2002

Authors and Affiliations

  • Tongbin Chen
    • 1
  • Zhilian Fan
    • 1
  • Mei Lei
    • 1
  • Zechun Huang
    • 1
  • Chaoyang Wei
    • 1
  1. 1.Laboratory of Environmental Remediation, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations