Skip to main content
Log in

Formation of Arrested States in Natural Di- and Trioctahedral Smectite Dispersions Compared to Those in Synthetic Hectorite — A Macro- and Microrheological Study

  • Published:
Clays and Clay Minerals

Abstract

The effect of natural clay-mineral properties on the rheological behavior of dispersion is very important in new geotechnical and industrial applications. The colloidal behavior of natural clay minerals with various octahedral structures was investigated using macro- and microrheological measurements and compared with the behavior of synthetic hectorite. In the present study montmorillonite (dioctahedral smectite of Volclay), natural hectorite (trioctahedral smectite of SHCa-1 Source Clay), and the synthetic trioctahedral smectite Laponite®, with lateral layer dimensions of 277, 100, and 30 nm, respectively, were used. The structure formation, kinetics of aging, and broad bandwidth viscoelastic response (10-2 — 106 rad/s) of their dispersions were obtained using mechanical shear and squeeze flow rheometry combined with diffusing wave spectroscopy (DWS) and multiple particle tracking (MPT) microrheology. State diagrams were determined at inherent pH considering the clay-mineral and NaCl concentrations as well as the kinetics of structure formation and sample aging. Due to the larger mean layer diameter and greater layer-charge density of natural clay-minerals, their sol—gel transitions occurred at higher solid and NaCl concentrations than those of Laponite®. Structure formation was faster at pH < pHPZC,edge than at pH > pHPZC,edge (point of zero charge at the edge). The long-term aging of natural clay-mineral samples was less pronounced in the glass state than in the gel state, in contrast to the findings for Laponite®. The storage modulus, G’, of clay-mineral dispersions in arrested states remained essentially constant in a wide frequency range (up to 100 rad/s), as expected. The corresponding plateau value of G’ depends on the number of particle contacts per volume and, hence, increased with decreasing particle size at a given concentration. The dissipation mechanisms determining the high-frequency loss modulus, G", however, are independent of particle size and, accordingly, the high-frequency crossover of G’ and G" shifted to higher values when the particle size decreased. The MPT data revealed structural refinement on the submicrometer length scale during the aging of weak hectorite gels, which was similar to the results for Laponite®. No refinement, however, occurred for montmorillonite in the glass or strong gel state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abend, S. and Lagaly, G. (2000) Sol-gel transitions of sodium montmorillonite dispersions. Applied Clay Science, 16, 201–227.

    Article  Google Scholar 

  • Alemdar, A., Óztekin, N., Gúngór, N., Ece, Ó.I., and Erim, F.B. (2005) Effects of polyethyleneimine adsorption on rheology of bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 2895–98.

    Google Scholar 

  • Ali, S. and Bandyopadhyay, R. (2016) Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt. Faraday Discussions, 186, 455–471.

    Google Scholar 

  • Arroyo, F.J., Carrique, F., Jiménez-Olivares, M.L., and Delgado, A.V. (2000) Rheological and electrokinetic properties of sodium montmorillonite suspensions. II. Low-frequency dielectric dispersion. Journal of Colloid and Interface Science, 229, 118–122.

    Google Scholar 

  • Au, P.I., Hassan, S., Liu, J., and Leong, Y.K. (2015) Behaviour of Laponite gels: Rheology, ageing, pH effect and phase state in the presence of dispersant. Chemical Engineering Research and Design, 101, 65–73.

    Google Scholar 

  • Awasthi, V. and Joshi, Y.M. (2009) Effect of temperature on aging and time-temperature superposition in nonergodic Laponite suspensions. Soft Matter, 5, 4991–4996.

    Google Scholar 

  • Baik, M.H., Cho, W.J., and Hahn, P.S. (2007) Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite. Engineering Geology, 91, 229–239.

    Google Scholar 

  • Balnois, E., Durand-Vidal, S., and Levitz, P. (2003) Probing the morphology of laponite clay colloids by atomic force microscopy. Langmuir, 19, 6633–6637.

    Google Scholar 

  • Benna, M., Kbir-Ariguib, N., Magnin, A., and Bergaya, F. (1999) Effect of pH on rheological properties of purified sodium bentonite suspensions. Journal of Colloid and Interface Science, 218, 442–455.

    Google Scholar 

  • Bonn, D., Tanase, S., Abou, B., Tanaka, H., and Meunier, J. (2002) Laponite: Aging and shear rejuvenation of a colloidal glass. Physical Review Letters, 89, 15701.

    Google Scholar 

  • Bosbach, D., Charlet, L., Bickmore, B., and Hochella, MF. (2000) The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy. American Mineralogist, 85, 1209–1216.

    Google Scholar 

  • Brandenburg, U. and Lagaly, G. (1988) Rheological properties of sodium montmorillonite dispersions. Applied Clay Science, 3, 263–279.

    Google Scholar 

  • Crassous, J.J., Régisser, R., Ballauff, M., and Willnebacher, N. (2005) Characterization of the viscoelastic behavior of complex fluids using the piezoelastic axial vibrator. Journal of Rheology, 49, 851–863.

    Google Scholar 

  • Crocker, J.C. and Grier, D.G. (1996) Methods of digital video microscopy for colloidal studies. Journal of Colloid and Interface Science, 179, 298–310.

    Google Scholar 

  • Dawson, J.I. and Oreffo, R.O.C. (2013) Clay: New opportunities for tissue regeneration and biomaterial design. Advanced Materials, 25, 4069–4086.

    Google Scholar 

  • De Oliveira, T. and Guegan, R. (2016) Coupled organoclay/micelle action for the adsorption of diclofenac. Environmental Science & Technology, 50, 10209–10215.

    Google Scholar 

  • Delavernhe, L., Steudel, A., Darbha, G.K., Scháfer, T., Schuhmann, R., Wóll, C., Geckeis, H., and Emmerich, K. (2015) Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 591–599.

    Google Scholar 

  • Delavernhe, L., Pilavtepe, M., and Emmerich, K. (2018) Cation exchange capacity of natural and synthetic hectorite. Applied Clay Science, 151, 175–180.

    Google Scholar 

  • Delhorme, M., Labbez, C., Caillet, C., and Thomas, F. (2010) Acid-base properties of 2:1 clays. I. modeling the role of electrostatics. Langmuir, 26, 9240–9249.

    Google Scholar 

  • Delhorme, M., Jónsson, B., and Labbez, C. (2014) Gel, glass and nematic states of plate-like particle suspensions: charge anisotropy and size effects. RSC Advances, 4, 34793.

    Google Scholar 

  • Eriksson, R. and Schatz, T. (2015) Rheological properties of clay material at the solid/solution interface formed under quasi-free swelling conditions. Applied Clay Science, 108, 12–18.

    Google Scholar 

  • Galamboš, M., Magula, M., Daňo, M., Osacký, M., Rosskopfová, O., and Rajec, P. (2012) Comparative study of cesium adsorption on dioctahedral and trioctahedral smectites. Journal of Radioanalytical and Nuclear Chemistry, 293, 829–837.

    Google Scholar 

  • Grangeon, S., Vinsot, A., Tournassat, C., Lerouge, C., Giffaut, E., Heck, S., Groschopf, N., Deneke, M.A., Wechner, S., and Scháfer, T. (2015) The influence of natural trace element distribution on the mobility of radionuclides. The exemple of nickel in a clay-rock. Applied Geochemistry, 52, 155–173.

    Google Scholar 

  • Houghton, H.A., Hasnain, I.A., and Donald, A.M. (2008) Particle tracking to reveal gelation of hectorite dispersions. European Physical Journal E, 25, pp.119–127.

    Google Scholar 

  • Jabbari-Farouji, S., Tanaka, H., Wegdam, G.H., and Bonn, D. (2008) Multiple nonergodic disordered states in Laponite suspensions: A phase diagram. Physical Review E, 78, 61405.

    Google Scholar 

  • Janek, M. and Lagaly, G. (2001) Proton saturation and rheological properties of smectite dispersions. Applied Clay Science, 19, 121–130.

    Google Scholar 

  • Jatav, S. and Joshi, Y.M. (2017) Phase behavior of aqueous suspension of Laponite: New insights with microscopic evidence. Langmuir, 33, 2370–2377.

    Google Scholar 

  • Jónsson, B., Labbez, C., and Cabane, B. (2008) Interaction of nanometric clay platelets. Langmuir, 24, 11406–11413.

    Google Scholar 

  • Kaufhold, S. and Dohrmann, R. (2013) The variable charge of dioctahedral smectites. Journal of Colloid and Interface Science, 390, 225–233.

    Google Scholar 

  • Khandal, R.K. and Tadros, T.F. (1988) Application of viscoelastic measurements to the investigation of the swelling of sodium montmorillonite suspensions. Journal of Colloid and Interface Science, 125, 122–128.

    Google Scholar 

  • Kleshchanok, D., Meester, V., Pompe, C.E., Hilhorst, J., and Lekkerkerker, H.N.W. (2012) Effects of added silica nanoparticles on hectorite gels. Journal of Physical Chemistry B, 116, 9532–9539.

    Google Scholar 

  • Knaebel, A., Bellour, M., Munch, J.P., Viasnoff, V., Lequeux, F., and Harden, J.L. (2000) Aging behavior of Laponite clay particle suspensions. Europhysics Letters, 52, 73–79.

    Google Scholar 

  • Kowalczyk, A., Oelschlaeger, C., and Willenbacher, N. (2015) Tracking errors in 2D multiple particle tracking microrheology. Measurement Science and Technology, 26, 15302.

    Google Scholar 

  • Lagaly, G. (1989) Principles of flow of kaolin and bentonite dispersions. Applied Clay Science, 4, 105–123.

    Google Scholar 

  • Lagaly, G. and Ziesmer, S. (2003) Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science, 100-102, 105–128.

    Google Scholar 

  • Laribi, S., Fleureau, J.M., Grossiord, J.L., and Kbir-Ariguib, N. (2005) Comparative yield stress determination for pure and interstratified smectite clays. Rheologica Acta, 44, 262–269.

    Google Scholar 

  • Lee, S.M. and Tiwari, D. (2012) Organo and inorgano-organomodified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59-60, 84–102.

    Google Scholar 

  • Lifshitz, I.M. and Slyozov, V.V. (1961) The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19, 35–50.

    Google Scholar 

  • Loring, J.S., Schaef, H.T., Turcu, R.V.F., Thompson, C.J., Miller, Q.R.S., Martin P.F., Hu, J., Hoyt, D.W., Qafoku, O., Ilton, E.S., Felmy, A.R., and Rosso, K.M. (2012) In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. Langmuir, 28, 7125–7128.

    Google Scholar 

  • Luckham, P.F. and Rossi, S. (1999) The colloidal and rheological properties of bentonite suspensions. Advences in Colloid and Interface Science, 82, 43–92.

    Google Scholar 

  • Mason, T.G. and Weitz, D.A. (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters, 74, 1250–1253.

    Google Scholar 

  • Meier, L.P. and Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386–388.

    Google Scholar 

  • Meunier, A. (2005) Clays. Springer Science & Business Media, Heidelberg, Germany, 472 pp.

    Google Scholar 

  • Michot, L.J., Bihannic, I., Porsch, K., Maddi, S., Baravian, C., Mougel, J., and Levitz, P. (2004) Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy}. Langmuir, 20, 10829–10837.

    Google Scholar 

  • Michot, L.J., Bihannic, I., Maddi, S., Funari, S.S., Baravian, C., Levitz, P., and Davidson, P. (2006) Liquid-crystalline aqueous clay suspensions. Proceedings of the National Academy of Sciences, 103, 16101–16104.

    Google Scholar 

  • Missana, T. and Adell, A. (2000) On the applicability of DLVO theory to the prediction of clay colloids stability. Journal of Colloid and Interface Science, 230, 150–156.

    Google Scholar 

  • Mohanty, R.P., Suman, K., and Joshi, Y.M. (2017) In situ ion induced gelation of colloidal dispersion of Laponite: Relating microscopic interactions to macroscopic behavior. Applied Clay Science, 138, 17–24.

    Google Scholar 

  • Mourad, M.C.D., Byelov, D.V., Petukhov, A.V., and Lekkerkerker, H.N.W. (2008) Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. Journal of Physics: Condensed Matter, 20, 494201.

    Google Scholar 

  • Mourad, M.C.D., Byelov, D.V., Petukhoc, A.V., Winter, D.A.M., Verkleij, A.J., and Lekkerkerker, H.N.W. (2009) Sol—gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platele t s. Journal of Physical Chemistry, 113, 11604–11613.

    Google Scholar 

  • Mourchid, A., Le’colier, E., Van Damme, H., and Levitz, P. (1998) On viscoelastic, birefringent, and swelling properties of Laponite clay suspensions: Revisited phase diagram. Langmuir, 14, 4718–4723.

    Google Scholar 

  • Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.

    Google Scholar 

  • Oelschlaeger, C., Schopferer, M., Scheffold, F., and Willenbacher, N. (2009) Linear-to-branched micelles transition: A rheometry and diffusing wave spectroscopy (DWS) study. Langmuir, 25, 716–723.

    Google Scholar 

  • Paineau, E., Bihannic, I., Baravian, C., Philippe, A.M., Davidson, P., Levitz, P., Funari, S.S., Rochas, C., and Michot, L.J. (2011a) Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions. Langmuir, 27, 5562–5573.

    Google Scholar 

  • Paineau, E., Michot, L.J., Bihannic, I., and Baravian, C. (2011b) Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir, 27, 7806–7819.

    Google Scholar 

  • Pignon, F., Magnin, A., Piau, J.M., Cabane, B., Lindner, P., and Diat, O. (1997) Yield stress thixotropic clay suspension: Investigation of structure by light, neutron, and X-ray scattering. Physical Review E, 56, 3281–3289.

    Google Scholar 

  • Pilavtepe, M., Recktenwald, S.M., Schuhmann, R., Emmerich, K., and Willenbacher, N. (2018) Macro- and microscale structure formation and aging in different arrested states of Laponite dispersions. Journal of Rheology, 62, 593–605.

    Google Scholar 

  • Ramos-Tejada, M.M., de Vicente, J., Ontiveros, A. and Duran, J.D.G. (2001a) Effect of humic acid adsorption on the rheological properties of sodium montmorillonite suspensions. Journal of Rheology, 45, 1159.

    Google Scholar 

  • Ramos-Tejada, M.M., Arroyo, F.J., Perea, R., and Durán, J.D.G. (2001b) Scaling behavior of the rheological properties of montmorillonite suspensions: Correlation between interparticle interaction and degree of flocculation. Journal of Colloid and Interface Science, 235, 251–259.

    Google Scholar 

  • Rand, B., Pekenć, E., Goodwin, J.M., and Smith, R.W. (1980) Investigation into the existence of edge-face coagulated structures in Na-montmorillonite suspensions. Journal of the Chemical Society, Faraday Transactions 1, 76, 225.

    Google Scholar 

  • Reiche, T., Noseck, U., and Scháfer, T. (2016) Migration of contaminants in fractured-porous media in the presence of colloids: Effects of kinetic interactions. Transport in Porous Media, 111, 143–170.

    Google Scholar 

  • Rich, J.P., McKinley, G.H., and Doyle, P.S. (2011) Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. Journal of Rheology, 55, 273–299.

    Google Scholar 

  • Rives, V., del Arco, M., and Mart’n, C. (2014) Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88-89, 239–269.

    Google Scholar 

  • Ross-Murphy, S.B. (1994) Rheological Methods. Pp. 343–392 in: Physical Techniques for the Study of Food Biopolymers (S.B. Ross-Murphy, editor). Springer US, Boston, Massachusetts, USA.

    Google Scholar 

  • Rozalén, M., Brady, P.V., and Huertas, F.J. (2009) Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics. Journal of Colloid and Interface Science, 333, 474–484.

    Google Scholar 

  • Ruzicka, B. and Zaccarelli, E. (2011) A fresh look at the Laponite phase diagram. Soft Matter, 7, 1268–1286.

    Google Scholar 

  • Saha, D., Bandyopadhyay, R., and Joshi, Y.M. (2015) Dynamic light scattering study and DLVO snalysis of physicochemical interactions in colloidal suspensions of charged disks. Langmuir, 31, 3012–3020.

    Google Scholar 

  • Savin, T. and Doyle, P.S. (2005) Static and dynamic errors in particle tracking microrheology. Biophysical Journal, 88, 623–638.

    Google Scholar 

  • Schlegel, M.L., Charlet, L., and Manceau, A. (1999) Sorption of metal ions on clay minerals. II. Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability. Journal of Colloid and Interface Science, 220, 392–405.

    Google Scholar 

  • Schnetzer, F., Thissen P., Giraudo, N., and Emmerich, K. (2016) Unraveling the coupled processes of (de)hydration and structural changes in Na+-saturated montmorillonite. Journal of Physical Chemistry C, 120, 15282–15287.

    Google Scholar 

  • Secor, R.B. and Radke, C.J. (1985) Spillover of the diffuse double layer on montmorillonite particles. Journal of Colloid and Interface Science, 103, 237–244.

    Google Scholar 

  • Shalkevich, A., Stradner, A., Bhat, S.K., Muller, F., and Schurtenberger, P. (2007) Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir, 23, 3570–3580.

    Google Scholar 

  • Sohm, R. and Tadros, T.F. (1989) Viscoelastic properties of sodium montmorillonite (Gelwhite H) suspensions. Journal of Colloid and Interface Science, 132, 62–71.

    Google Scholar 

  • Struik, L.C.E. (1978) Physical Aging in Amorphous Polymers and Other Materials. Elsevier Scientific, New York. 229 pp.

    Google Scholar 

  • Tanaka, H., Meunier, J., and Bonn, D. (2004) Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels. Physical Review E, 69, 031404.

    Google Scholar 

  • Tanaka, H., Jabbari-Farouji, S., Meunier, J., and Bonn, D. (2005) Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation. Physical Review E, 021402.

    Google Scholar 

  • Tawari, S.L., Koch, D.L., and Cohen, C. (2001) Electrical double-layer effects on the Brownian diffusivity and aggregation rate of Laponite clay particles. Journal of Colloid and Interface Science, 240, 54–66.

    Google Scholar 

  • Tombácz, E. and Szekeres, M. (2004) Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94.

    Google Scholar 

  • van Olphen, H. (1978) An Introduction to Clay Colloid Chemistry. Berichte der Bunsengesellschaft fúr physikalische Chemie, 82, 236–237.

    Google Scholar 

  • Willenbacher, N. (1996) Unusual thixotropic properties of aqueous dispersions of Laponite RD. Journal of Colloid and Interface Science, 182, 501–510.

    Google Scholar 

  • Winter, H.H. and Chambon, F. (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology, 30, 367–382.

    Google Scholar 

  • Wolters, F., Lagaly, G., Kahr, G., Nueesch, R., and Emmerich K. (2009) A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115–133.

    Google Scholar 

  • Yariv, S. and Cross, H. (1979) Geochemistry of Colloid Systems: For Earth Scientists. Springer-Verlag, Berlin, 451 pp

    Google Scholar 

  • Yildiz, N., Sarikaya, Y., and Calimli, A. (1999) The effect of the electrolyte concentration and pH on the rheological properties of the original and the Na2CO3-activated Kútahya bentonite. Applied Clay Science, 14, 319–327.

    Google Scholar 

  • Zbik, M.S., Williams, D.J., Song, Y.F., and Wang, C.C. (2014) The formation of a structural framework in gelled Wyoming bentonite: Direct observation in aqueous solutions. Journal of Colloid and Interface Science, 435, 119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilavtepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilavtepe, M., Delavernhe, L., Steudel, A. et al. Formation of Arrested States in Natural Di- and Trioctahedral Smectite Dispersions Compared to Those in Synthetic Hectorite — A Macro- and Microrheological Study. Clays Clay Miner. 66, 339–352 (2018). https://doi.org/10.1346/CCMN.2018.064102

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2018.064102

Key Words

Navigation