Skip to main content
Log in

Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey

  • Published:
Clays and Clay Minerals

Abstract

Numerous occurrences of asbestos minerals, notably chrysotile and tremolite, are to be found on fracture surfaces in thrust fault deformation zones of Cretaceous dunite-harzburgite and pyroxenite in the Çankırı and Ankara regions, central Anatolia, Turkey. Consequently, potential exists for the development of regional malignant mesothelioma. The means of serpentinization, such as reaction of seawater during accretion of the upper ophiolitic mantle crust in a subduction zone and/or following uplift of ophiolitic units and the influence of hydrothermal/meteoric fluids along fractures, were investigated. Cretaceous dunite-harzburgite and localized pyroxenite rocks are mainly composed of serpentinized olivine and pyroxene associated with opaque minerals and Fe-(oxyhydr)oxide phases. Smectite, chlorite, illite, kaolinite, hydromagnesite, goethite, quartz, and opal-CT are also present. Chrysotile and localized tremolite occur either as a mesh, a suboriented to oriented long-fiber bundle, or as fiber-filling millimetric micro-vein textures on relicts of olivine and pyroxene (enstatite, augite). The chrysotile and tremolite have non-pseudomorphic textures developed under high pressure and temperature. The textures suggest authigenic formation of chrysotile and tremolite via a dissolution and precipitation mechanism. Additionally, spherical structures of opal-CT and locally platy hydromagnesite crystals either enclose or are developed within chrysotile/tremolite fiber bundles. The leaching of MgO, Fe2O3, Al2O3, Ni, Cr, and Nb, an increase in the LREE/HREE ratio, and negative Eu anomalies in the dunite-harzburgite and pyroxenite, and asbestos samples suggest that the chrysotile and tremolite were derived from the serpentinization of olivine and pyroxene. The chrysotile and tremolite were developed along fractures by hydrothermal fluid alteration during accretion and/or following the uplift of ophiolitic units of the region under high pressure and temperature conditions. This interpretation is also supported by isotope data and the calculated formation temperature of 170–555°C for chrysotile and tremolite. The average structural formulae for chrysotile and tremolite are (NanK0.03)(Mg5.54Fe0.09Al0.05Ca0.01Mn0.001) (Si3.96Al0.03)O10(OH)8 and (Na0.17K0.07)(Ca1.59Mg0.19Mn0.002)(Mg4.72Fe0.28)(Si7.86Al0.1Fe0.06)O22(OH)2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atabey, E. (2009) Türkiye’de asbest, eriyonit, kuvars ve diğer mineral tozlar. ve etkileri. MTA Yer Bilimleri ve Kültür Serisi, 6, 191s.

    Google Scholar 

  • Atabey, E. (2015) Türkiye asbest haritas. (çevresel asbest maruziyeti-akciğer kanseri-mezotelyoma). Tüberküloz ve Toraks Dergisi, 63, 199–219.

    Google Scholar 

  • Atabey, E. and Ünal, H. (2008) Batı Anadolu’daki Jeolojik Unsurlar ve Halk Sağlğgı Projesi Tıbbi Jeoloji Raporu, MTA Rapor No. 11067.

    Google Scholar 

  • Barış, Y.İ. (1987) Asbestos and Erionite Related Chest Diseases. Semih Ofset Matbaas., Ankara, Turkey, 167 pp.

    Google Scholar 

  • Barış, Y.İ. (1994) Bu Doktoru Rehin Alalım: Anadolu’da bir Kanser Arastırması. Ajans Türk Mat. San. A.S., Kent Matbaası, Ankara, Turkey, 112 pp.

    Google Scholar 

  • Barış, Y.İ. (2003) İğdeköy / Emet-Kütahya Araştırması, Asbest’ten Sonra Arsenik, Anadolu’nun Bitmeyen Akciğer ve Karın Zarı Kanseri Çilesi. Bilimsel Tıp Yayınevi, Ankara, Turkey, 72–80 pp.

    Google Scholar 

  • Barış, Y.İ. (2008) Türkiye’fde asbest ve eriyonit sorunu. Uluslararası Katılımlı Tıbbi Jeoloji Sempozyum Kitabı (Esşref Atabey, editor), 18, YMGV Yay.n., ISSN: 978-975-7946-33-5.İstanbul, Turkey.

    Google Scholar 

  • Barış, Y.İ. and Atabey, E. (2009) Türkiye’de Mesleksel ve Çevresel Hastalıklar, Köseleciler 1933, Magic Digital Center, Bursa, 221 pp.

    Google Scholar 

  • Barnes, J.D., Eldam, R., Lee, C.-T.A., Errico, J.C., Loewy, S., and Cisneros, M. (2013) Petrogenesis of serpentinites from the Franciscan Complex, western California, USA. Lithos, 178, 143–157.

    Google Scholar 

  • Bau, M. and Dulski, P. (1996) Distribution of yttrium and rareearth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Google Scholar 

  • Bayram, M., Döngel, I., Bakan, N.D., Yalçın, H., Cevit, R., Dumortier, P., and Nemery, B. (2013) High risk of malignant mesothelioma and pleural plaques in subjects born close to ophiolites. Chest, 143, 164–171.

    Google Scholar 

  • Beinlich, A., Austrheim, H., Glodny, J., Erambert, M., and Andersen, T.B. (2010) CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund Basin, SW Norway. Geochimica Cosmochimica Acta, 74, 6935–6964.

    Google Scholar 

  • Biondi, J.C. (2014) Neoproterozoic Cana Brava chrysotile deposit (Goiás, Brazil): Geology and geochemistry of chrysotile vein formation. Lithos, 184-187, 132–154.

    Google Scholar 

  • Brindley, G.W. (1980a) Quantitative X-ray analysis of clays. pp. 411–438 in: Crystal Structures of Clay Minerals and Their X-ray Identification (G.W. Brindley and G. Brown, editors) Mineralogical Society Monograph 5, London.

    Google Scholar 

  • Brindley, G.W. (1980b) Order-disorder in clay mineral structures. Pp. 125–196 in: Crystal Structures of Clay Minerals and Their X-ray Identification (G.W. Brindley and G. Brown, editors). Mineralogical Society Monograph 5, London.

    Google Scholar 

  • Çelik, Ö.F., Marzoli, A., Marschik, R., Chiaradia, M., Neubauer, F., and Öz, I. (2011) Early-Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey. Tectonophysics, 509, 120–134.

    Google Scholar 

  • Çelik, Ö.F., Chiaradia, M., Marzoli, A., Billor, Z., and Marschik, R. (2013) The Eldivan Ophiolite and volcanic rocks in the İzmir-Ankara-Erzincan suture zone, Northern Turkey: Geochronology, whole-rock geochemical and Nd- Sr-Pb isotope characteristics. Lithos, 172-173, 31–46.

    Google Scholar 

  • Coleman, R.G. (1977) Emplacement and metamorphism of ophiolites. Rendiconti Società Italiana di Mineralogia e Petrologia, 33, 161–190.

    Google Scholar 

  • Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 1702–1703.

    Google Scholar 

  • Dai, S., Graham, I.T., and Ward, C.R. (2016) A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159, 82–95.

    Google Scholar 

  • Dangerfield, A., Harris, R., Sarıfakıoğlu, E., and Dilek, Y. (2011) Tectonic evolution of the Ankara Mélange and associated Eldivan ophiolite near Hanşili, central Turkey. Pp. 143–169 in: Mélanges: Processes of Formation and Societal Significance (J. Wakabayashi and Y. Dilek, editors). The Geological Society of America Special Paper, 480.

    Google Scholar 

  • Della Ventura, G., Caprilli, E., Bellatreccia, F., De Benedetti, A.A., and Mottana, A. (2014) Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal chemistry. Rendiconti Lincei. Scienze Fisiche e Naturali, 25, 229–236.

    Google Scholar 

  • Dilek, Y. and Thy, P. (2006) Age and petrogenesis of plagiogranite intrusions in the Ankara meélange, central Turkey. Island Arc, 15, 44–57.

    Google Scholar 

  • Döngel, İ., Bayram, M., Bakan, N.D., Yalçın, H., and Gültürk, S. (2013) Is living close to ophiolites related to asbestos related diseases? Cross-sectional study. Respiratory Medicine, 107, 870–874.

    Google Scholar 

  • Evans, B.W., Ghiorso, M.S., and Kuehner, S.M. (2000) Thermodynamic properties of tremolite: A correction and some comments. American Mineralogist, 85, 466–472.

    Google Scholar 

  • Foresti, E., Fornero, E., Lesci, I.G., Rinaudo, C., Zuccheri, T., and Roveri, N. (2009) Asbestos health hazard: A spectroscopic study of synthetic geoinspired Fe-doped chrysotile. Journal of Hazardous Materials, 167, 1070–1079.

    Google Scholar 

  • Früh-Green, G.L., Weissert, H., and Bernoulli, D. (1990) A multiple fluid history recorded in Alpine ophiolites. Journal of the Geological Society, 147, 959–970.

    Google Scholar 

  • Gilg, H.A., Weber, B., Kasbohm, J., and Frei, R. (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany. Clay Minerals, 38, 95–112.

    Google Scholar 

  • González-Álvarez, I., Sweetapple, M., Lindley, I.D., and Kirakar, J. (2013) Hydrothermal Ni: Doriri Creek, Papua New Guinea. Ore Geology Reviews, 52, 37–57.

    Google Scholar 

  • Gökten, E. and Floyd, P.A. (2007) Stratigraphy and geochemistry of pillow basalts within the ophiolitic meélange of the İzmir-Ankara-Erzincan suture zone: implications for the geotectonic character of the northern branch of Neotethys. International Journal of Earth Sciences, 96, 725–741.

    Google Scholar 

  • Grant, J.A. (1986) The isocon diagram - A simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81, 1976–1982.

    Google Scholar 

  • Grant, J.A. (2005) Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30, 997–1004.

    Google Scholar 

  • Hakyemez, Y., Barkurt, M.Y., Bilginer, E., Pehlivan, S., Can, B., Dağer, Z., and Sözeri, B. (1986) Yapraklı-Ilgaz-Çankırı- Çandır dolayının jeolojisi. MTA Rapor No: 7966, Ankara, Turkey.

    Google Scholar 

  • Iyer, K. (2007) Mechanisms of Serpentinization and Some Geochemical Effects. PhD Thesis, Department of Physics of Geological Processes, Faculty of Mathematics and Natural Sciences, University of Oslo, 36 p.

    Google Scholar 

  • Iyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sorenssen, A., and Feder, J. (2008) Reaction-assisted hierarchical fracturing during serpentinization. Earth and Planetary Science Letters, 267, 503–516.

    Google Scholar 

  • Jenkins, D.M. (1987) Synthesis and characterization of tremolite in the system H2O-CaO-MgO-SiO2. American Mineralogist, 72, 707–715.

    Google Scholar 

  • Jöns, N., Bach, W., and Klein, F. (2010) Magmatic influence on reaction paths and element transport during serpentinization. Chemical Geology, 274, 196–211.

    Google Scholar 

  • Kadir, S., Kolaylı, H., and Eren, M. (2012) Genesis of sedimentary- and vein-type magnesite deposits at Kop Mountain, NE Turkey. Turkish Journal of Earth Sciences, 21, 1–18.

    Google Scholar 

  • Kadir, S., Aydogan, M.S., Elitok, O., and Helvac. C. (2015) Composition and genesis of nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdagi region (Uşak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163–184.

    Google Scholar 

  • Kadir, S. and Erkoyun, H. (2015) Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskisehir region of western Turkey. Clay Minerals, 50, 441–458.

    Google Scholar 

  • Kadir, S., Külah, T., Önalgil, N., Erkoyun, H., and Elliott, W.C. (2017) Mineralogy, geochemistry, and genesis of bentonites in Miocene volcanic-sedimentary units of the Ankara-Çankırı basin, central Anatolia, Turkey. Clays and Clay Minerals, 65, 64–91.

    Google Scholar 

  • Karadenizli, L. (2011) Oligocene to Pliocene palaeogeographic evolution of the Çankırı-Çorum Basin, central Anatolia, Turkey. Sedimentary Geology, 237, 1–29.

    Google Scholar 

  • Kaymakçı, N. (2000) Tectono-stratigraphical evolution of the Çankırı Basin (Central Anatolia, Turkey). Geologia Ultraiectina, 190, 1–247.

    Google Scholar 

  • Khedr, M.Z. and Arai, S. (2009) Geochemistry of metasomatized peridotites above subducting slab: A case study of hydrous metaperidotites from Happo-O’ne comple, central Japan. Journal of Mineralogical and Petrological Sciences, 104, 313–318.

    Google Scholar 

  • Knupp, R.L. (1999) The Origin of Brucite in Hydrothermally Altered Limestone Near Devil Peak, Nevada. MSc Thesis, Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA 143 p.

    Google Scholar 

  • Koçyiğit, A. (1987) Hasanoğlan (Ankara) yöresinin tektonostratigrafisi: Karakaya orojenik kuşağının evrimi. Hacettepe University Earth Science Bulletin, 14, 269–293.

    Google Scholar 

  • Koçyiğit, A., Türkmenoğlu, A., Beyhan, A., Kaymakşı, N., and Akyol, E. (1995) Post- collisional tectonics of Eskişehir - Ankara - Çankırı Segment of İzmir - Ankara - Erzincan Suture Zone (IAESZ): Ankara orogenic phase. Turkish Association of Petroleum Geologists Bulletin, 6, 69–86.

    Google Scholar 

  • Kuşçu, İ. and Erler, A. (1998) Mineralization events in a collision-related setting: The Central Anatolian Crystalline Complex, Turkey. International Geology Review, 40, 552–565.

    Google Scholar 

  • Külah, T., Kadir, S., Gürel, A., Eren, M., and Önalgil, N. (2014) Mineralogy, geochemistry, and genesis of mudstones in the upper Miocene Mustafapaşa member of the Ügüp formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267–285.

    Google Scholar 

  • Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., and Toche, F. (2012) Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. Journal of Crystal Growth, 347, 62–72.

    Google Scholar 

  • Lamadrid, H.M., Rimstidt, J.D., Schwarzenbach, E.M., Klein, F., Ulrich, S., Dolocan, A., and Bodnar, R.J. (2017) Effect of water activity on rates of serpentinization of olivine. Nature Communications, 8:16107, DOI: https://doi.org/10.1038/ncomms16107.

    Google Scholar 

  • Lescano, L., Gandini, N.A., Marfil, S.A., and Maiza, P.J. (2015) Biological effects of Argentine asbestos: Mineralogical and morphological characterisation. Environmental Earth Sciences, 73, 3433–3444.

    Google Scholar 

  • Liu, Y., Deng, J., Shi, G., Yui, T-Fu., Zhang, G., Abuduwayiti, M., Yang, L., and Sun, X. (2011) Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. Journal of Asian Earth Sciences, 42, 440–451.

    Google Scholar 

  • López-Moro, F.J. (2012) EASYGRESGRANT - A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Computers and Geosciences, 39, 191–196.

    Google Scholar 

  • Malvoisin, B. and Brunet, F. (2014) Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization. Earth and Planetary Science Letters, 403, 263–272.

    Google Scholar 

  • Marsh, J.S. (1991) REE fractionation and Ce anomalies in weathered Karoo dolerite. Chemical Geology, 90, 189–194.

    Google Scholar 

  • Metintaş, M., Özdemir, N., Hillerdal, G., Uçgun, I., Metintaş, S., Baykul, C., Elbek, O., Mutlu, S., and Kolsuz, M. (1999) Environmental asbestos exposure and malignant pleural mesothelioma. Respiratory Medicine, 93, 349–355.

    Google Scholar 

  • Metintaş, S., Metintaş, M., Ucgun, I., and Oner, U. (2002a) Malignant mesothelioma due to environmental exposure to asbestos. Chest, 122, 2224–2229.

    Google Scholar 

  • Metintas, M., Metintas, S., Ucgun, I., and Baykul, C. (2002b) Eskisehir İli kırsal alanında çevresel asbest teması ile ilgili solunum sistemi sorunları. TÜBİTAK Project No. YDABÇAG-585.

    Google Scholar 

  • Metintas, M., Metintas, S., Ak, G., Erginel, S., Alatas, F., Kurt, E., Ucgun, I., and Yildirim, H. (2008) Epidemiology of pleural mesothelioma in a population with non-occupational asbestos exposure. Respirology, 13, 117–121.

    Google Scholar 

  • Metintaş, S., Batırel, H.F., Bayram, H. Yılmaz,.Ü, Karadağ, M., Ak, G., and Metintas, M., (2017) Turkey national mesothelioma surveillance and environmental asbestos exposure control program. International Journal of Environmental Research and Public Health, 14, doi: https://doi.org/10.3390/ijerph14111293.

    Google Scholar 

  • Mével, C. (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335, 825–852.

    Google Scholar 

  • Montes-Hernandez, G., Renard, F., Chiriac, R., Findling, N., and Toche, F. (2012) Rapid precipitation of magnesite micro-crystals from Mg(OH)2-H2O-CO2 slurry enhanced by NaOH and a heat-ageing step (from 20 to 90°C). Crystal Growth and Design, 12, 5233–5240.

    Google Scholar 

  • Moody, J.B. (1976) Serpentinization: A review. Lithos, 9, 125–138.

    Google Scholar 

  • Moore, D.M. and Reynolds, R.C., Jr. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332 pp.

    Google Scholar 

  • MTA (2002) 1/500,000 scale geological map of Turkey - Zonguldak, Sinop, Kayseri, Ankara, General Directorate of Mineral Research and Exploration of Turkey.

    Google Scholar 

  • Mumpton, F.A. and Thompton, C.S. (1975) Mineralogy and origin of the Coalinga asbestos deposit. Clays and Clay Minerals, 23, 131–144.

    Google Scholar 

  • Niu, Y. (2004) Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath midocean ridges. Journal of Petrology, 45, 2423–2458.

    Google Scholar 

  • Nuriel, P., Katzir, Y., Abelson, M., Valley, J.W., Matthews, A., Spicuzza, M.J., and Ayalon, A. (2009) Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex. Earth and Planetary Science Letters, 282, 34–46.

    Google Scholar 

  • O’Hanley, D.S. (1996) Serpentinites: Records of Tectonic and Petrological History. Oxford University Press, New York, 277 p.

    Google Scholar 

  • Okay, A.I. and Tüysüz, O. (1999) Tethyan sutures of northern Turkey. Pp. 475–515 in: The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen (B. Durand, L. Jolivet, F. Horváth, and M. Séranne, editors). Geological Society, London, Special Publications, 156.

    Google Scholar 

  • Pacella, A., Andreozzi, G.B., and Fournier, J. (2010) Detailed crystal chemistry and iron topochemistry of asbestos occurring in its natural setting: A first step to understanding its chemical reactivity. Chemical Geology, 277, 197–206.

    Google Scholar 

  • Page, N.J. (1968) Chemical differences among the serpentine polymorphs. American Mineralogist, 53, 201–215.

    Google Scholar 

  • Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., and Harvey, J. (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179–210.

    Google Scholar 

  • Rojay, B. (2013) Tectonic evolution of the Cretaceous Ankara Ophiolitic Mélange during the Late Cretaceous to pre- Miocene interval in Central Anatolia, Turkey. Journal of Geodynamics, 65, 66–81.

    Google Scholar 

  • Ross, M. and Nolan, R.P. (2003) History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes. Pp. 447–470 in: Ophiolite Concept and the Evolution of Geological Thought: Boulder, Colorado (Y. Dilek and S. Newcomb, editors). Geological Society of America Special Paper, 373.

    Google Scholar 

  • Saccocia, P.J., Seewald J.S., and Shanks III W.C. (2009) Oxygen and hydrogen isotope fractionation in serpentine—water and talc-water systems from 250 to 450°C, 50 MPa. Geochimica et Cosmochimica Acta, 73, 6789–6804.

    Google Scholar 

  • Sarıfakıoğlu, E., Sevin, M., Esirtgen, E., Bilgiç, T., Duran, S., Parlak, O., Karabalık, N., Alemdar, S., Dilek, Y., and Uysal, I. (2011) The Geology of Ophiolitic Rocks around Çankırı-Çorum Basin: Petrogenesis, Tectonics and Ore Deposits: Ankara, Turkey. General Directorate of Mineral Research and Exploration (MTA) Report 11449, 196 p.

    Google Scholar 

  • Sarıfakıoğlu, E., Dilek, Y., and Sevin, M. (2014) Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara mélange, north-central Anatolia, Turkey. Solid Earth, 5, 77–108.

    Google Scholar 

  • Sarıfakıoğlu, E., Dilek, Y., and Sevin, M. (2017) New synthesis of the Izmir-Ankara-Erzincan suture zone and the Ankara mélange in northern Anatolia based on new geochemical and geochronological constraints, in: Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions (R., Sorkhabi, editor). Geological Society of America Special Paper 525.

    Google Scholar 

  • Savin, S.M. and Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 25–42.

    Google Scholar 

  • Sevin, M. and Uğuz, M.F. (2011) Geological Map of Çankırı G 30 Quadrangle, Scale 1:100.000, General Directorate of Mineral Research and Exploration (MTA) Publications, Ankara, Turkey.

    Google Scholar 

  • Sheppard, S.M.F. and Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 1–24.

    Google Scholar 

  • Sheppard, S.M.F., Nielsen, R.L., and Taylor, H.P. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755–777.

    Google Scholar 

  • Sonzogni, Y., Treiman, A.H., and Schwenzer, S.P. (2017) Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California. Journal of Mineralogical and Petrological Sciences, 112, 59–76.

    Google Scholar 

  • Sun, S.-s. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Pp. 313–345 in: Magmatism in the Ocean Basins (A.D. Saunders and M.J. Norry, editors). Geological Society, London, 42.

    Google Scholar 

  • Şengör, A.M.C. and Yımaz, Y. (1981) Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181–241.

    Google Scholar 

  • Turkish Mesothelioma Working Group (2015) Turkey asbestos control strategic plan final report. Turkish Thoracic Journal, 16, S1–S26.

    Google Scholar 

  • Üner, T. and Çakır, Ü. (2011) Mineralogical, petrographical and geochemical characteristics of Eldivan Ophiolite (Çankırı) harzburgitic tectonites. Mineral Research and Exploration Bulletin, 143, 75–94.

    Google Scholar 

  • Van Gosen, B.S. (2007) The geology of asbestos in the United States and its practical applications. Environmental and Engineering Geoscience, XIII, 55–68.

    Google Scholar 

  • Wenner, D.B. and Taylor, H.P. (1973) Oxygen and hydrogen isotopic studies of the serpentinization of the ultramafic rocks in oceanic environments and continental ophiolitic complexes. American Journal of Science, 273, 207–239.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Google Scholar 

  • Wicks, F.J. and Whittaker, E.J.W. (1977) Serpentine textures and serpentinization. Canadian Mineralogist, 15, 459–488.

    Google Scholar 

  • Yılmaz, Y., Genç, S.C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, S., and Elmas, A. (2000) When did the western Anatolian grabens begin to develop? Pp. 353–384 in: Tectonics and Magmatism in Turkey and the Surrounding Area (E. Bozkurt, J.A. Winchester, and J.D.A. Piper, editors). Special Publications, 173, Geological Society of London.

    Google Scholar 

  • Zaremba, T., Krzakała, A., Piotrowski, J., and Garczorz, D. (2010) Study on the thermal decomposition of chrysotile asbestos. Journal of Thermal Analysis and Calorimetry, 101, 479–485.

    Google Scholar 

  • Zheng Y.-F. (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selahattin Kadir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Külah, T., Kadir, S., Erkoyun, H. et al. Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey. Clays Clay Miner. 66, 146–172 (2018). https://doi.org/10.1346/CCMN.2018.064088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2018.064088

Key Words

Navigation