Skip to main content
Log in

Changes in the Interlayer Structure and Thermodynamics of Hydrated Montmorillonite Under Basin Conditions: Molecular Simulation Approaches

  • Published:
Clays and Clay Minerals

Abstract

Interlayer swelling of hydrated montmorillonite is an important issue in clay mineralogy. Although the swelling behavior of montmorillonite under ambient conditions has been investigated comprehensively, the effects of basin conditions on the hydration and swelling behaviors of montmorillonite have not been characterized thoroughly. In the present study, molecular dynamics simulations were employed to reveal the swelling behavior and changes in the interlayer structure of Namontmorillonite under the high temperatures and pressures of basin conditions. According to the calculation of the immersion energy, the monolayer hydrate becomes more stable than the bilayer hydrate at a burial depth of 7 km (at a temperature of 518 K and a lithostatic pressure of 1.04 kbar). With increasing burial depth, the basal spacings of the monolayer and bilayer hydrates change to varying degrees. The density-distribution profiles of interlayer species exhibit variation in the hydrate structures due to temperature and pressure change, especially in the structures of bilayer hydrate. With increasing depth, more Na+ ions prefer to distribute closer to the clay layers. The mobility of interlayer water and ions increases with increasing temperature, while increasing pressure caused the mobility of these ions to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R., Ratcliffe, I., Greenwell, H., Williams, P., Cliffe, S., and Coveney, P. (2010) Clay swelling — a challenge in the oilfield. Earth-Science Reviews, 98, 201–216.

    Article  Google Scholar 

  • Berend, I., Cases, J.M., Francois, M., Uriot, J.P., Michot, L., Masion, A., and Thomas, F. (1995) Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324–336.

    Article  Google Scholar 

  • Boek, E.S. and Sprik, M. (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. Journal of Physical Chemistry B, 107, 3251–3256.

    Article  Google Scholar 

  • Boek, E.S., Coveney, P.V., and Skipper, N.T. (1995a) Molecular modeling of clay hydration: A study of hysteresis loops in the swelling curves of sodium montmorillonites. Langmuir, 11, 4629–4631.

    Article  Google Scholar 

  • Boek, E.S., Coveney, P.V., and Skipper, N.T. (1995b) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117, 12608–12617.

    Article  Google Scholar 

  • Bourg, I.C. and Sposito, G. (2010) Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media. Environmental Science & Technology, 44, 2085–2091.

    Article  Google Scholar 

  • Brown, G. and Brindley, G.W. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society of Great Britian & Ireland.

  • Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, J.P., Thomas, F., and Poirier, J.E. (1992) Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 2730–2739.

    Article  Google Scholar 

  • Cases, J.M., Berend, I., Francois, M., Uriot, J.P., Michot, L.J., and Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22.

    Article  Google Scholar 

  • Cygan, R.T., Liang, J.-J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108, 1255–1266.

    Article  Google Scholar 

  • Cygan, R.T., Greathouse, J.A., Heinz, H., and Kalinichev, A.G. (2009) Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470–2481.

    Article  Google Scholar 

  • Dazas, B., Ferrage, E., Delville, A., and Lanson, B. (2014) Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. American Mineralogist, 99, 1724–1735.

    Article  Google Scholar 

  • De Pablo, L., Chavez, M.L., and De Pablo, J.J. (2005) Stability of Na-, K-, and Ca-montmorillonite at high temperatures and pressures: A Monte Carlo simulation. Langmuir, 21, 10874–10884.

    Article  Google Scholar 

  • De Siqueira, A.V.C., Skipper, N.T., Coveney, P.V., and Boek, E.S. (1997) Computer simulation evidence for enthalpy driven dehydration of smectite clays at elevated pressures and temperatures. Molecular Physics, 92, 1–6.

    Article  Google Scholar 

  • De Siqueira, A.V., Lobban, C., Skipper, N.T., Williams, G.D., Soper, A.K., Done, R., Dreyer, J.W., Humphreys, R.J., and Bones, J.A. (1999) The structure of pore fluids in swelling clays at elevated pressures and temperatures. Journal of Physics: Condensed Matter, 11, 9179.

    Google Scholar 

  • Deming, D. (2002) Introduction to Hydrogeology. McGraw-Hill, New York.

    Google Scholar 

  • Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B.A., and Drits, V.A. (2005a) New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials, 17, 3499–3512.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A. (2005b) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. montmoril lonite hydration properties. American Mineralogist, 90, 1358–1374.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Michot, L.J., and Robert, J.-L. (2010) Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. Journal of Physical Chemistry C, 114, 4515–4526.

    Article  Google Scholar 

  • Greathouse, J.A., Stellalevinsohn, H.R., Denecke, M.A., Bauer, A., and Pabalan, R.T. (2005) Uranyl surface complexes in a mixed-charge montmorillonite: Monte Carlo computer simulation and polarized XAFS results. Clays and Clay Minerals, 53, 278–286.

    Article  Google Scholar 

  • Guggenheim, S. and Van Groos, A.K. (2001) Baseline studies of The Clay Minerals Society source clays: thermal analysis. Clays and Clay Minerals, 49, 433–443.

    Article  Google Scholar 

  • Heinz, H., Koerner, H., Anderson, K.L., Vaia, R.A., and Farmer, B. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Article  Google Scholar 

  • Hensen, E.J. and Smit, B. (2002) Why clays swell? The Journal of Physical Chemistry B, 106, 12664–12667.

    Article  Google Scholar 

  • Holmboe, M. and Bourg, I.C. (2014) Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature. The Journal of Physical Chemistry C, 118, 1001–1013.

    Article  Google Scholar 

  • Holmboe, M., Wold, S., and Jonsson, M. (2012) Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydrology, 128, 19–32.

    Article  Google Scholar 

  • Huang, W.L., Bassett, W.A., and Wu, T.C. (1994) Dehydration and hydration of montmorillonite at elevated temperatures and pressures monitored using synchrotron radiation. American Mineralogist, 79, 683–691.

    Google Scholar 

  • Hunt, J.M. (1990) Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74, 1–12.

    Google Scholar 

  • Kim, N., Kim, Y., Tsotsis, T.T., and Sahimi, M. (2005) Atomistic simulation of nanoporous layered double hydroxide materials and their properties. I. Structural modeling. Journal of Chemical Physics, 122.

    Article  Google Scholar 

  • Kumar, P.P., Kalinichev, A.G., and Kirkpatrick, R.J. (2007) Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids. Journal of Physical Chemistry C, 111, 13517–13523.

    Article  Google Scholar 

  • Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays and Clay Minerals, 47, 630–636.

    Article  Google Scholar 

  • Liu, X.D. and Lu, X.C. (2006) A thermodynamic understanding of clay-swelling inhibition by potassium ions. Angewandte Chemie, International Edition, 45, 6300–6303.

    Article  Google Scholar 

  • Liu, X.D., Lu, X.C., Wang, R.C., and Zhou, H.Q. (2008) Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochimica et Cosmochimica Acta, 72, 1837–1847.

    Article  Google Scholar 

  • Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92–96.

    Google Scholar 

  • Meunier, A. (2005) Clays. Springer Science & Business Media.

    Google Scholar 

  • Odriozola, G. and Guevara-Rodríguez, F.d.J. (2004) Namontmorillonite hydrates under basin conditions: Hybrid Monte Carlo and molecular dynamics simulations. Langmuir, 20, 2010–2016.

    Article  Google Scholar 

  • Osakai, T., Tokura, A., Ogawa, H., Hotta, H., Kawakami, M. and Akasaka, K. (2003) Temperature effect on the selective hydration of sodium ion in nitrobenzene. Analytical Sciences, 19, 1375–1380.

    Article  Google Scholar 

  • Petit, S. and Madejová, J. (2013) Fourier transform infrared spectroscopy. Pp. 213–231 in: Handbook of Clay Science, 2nd edition (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5, Elsevier, Amsterdam.

    Article  Google Scholar 

  • Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19.

    Article  Google Scholar 

  • Rick, S.W., Stuart, S.J., and Berne, B.J. (1994) Dynamical fluctuating charge force-fields - application to liquid water. Journal of Chemical Physics, 101, 6141–6156.

    Article  Google Scholar 

  • Shahriyari, R., Khosravi, A., and Ahmadzadeh, A. (2013) Nanoscale simulation of Na-montmorillonite hydrate under basin conditions, application of CLAYFF force field in parallel GCMC. Molecular Physics, 111, 3156–3167.

    Article  Google Scholar 

  • Smith, D.E. (1998) Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir, 14, 5959–5967.

    Article  Google Scholar 

  • Smith, D.E., Wang, Y., Chaturvedi, A., and Whitley, H.D. (2006) Molecular simulations of the pressure, temperature, and chemical potential dependencies of clay swelling. The Journal of Physical Chemistry B, 110, 20046–20054.

    Article  Google Scholar 

  • Tambach, T.J., Hensen, E.J., and Smit, B. (2004) Molecular simulations of swelling clay minerals. The Journal of Physical Chemistry B, 108, 7586–7596.

    Article  Google Scholar 

  • Teich-McGoldrick, S.L., Greathouse, J.A., Jové-Colón, C.F., and Cygan, R.T. (2015) Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. The Journal of Physical Chemistry C, 119, 20880–20891.

    Article  Google Scholar 

  • Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D.M., and Schäfer, L. (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. The Journal of Physical Chemistry B, 101, 1579–1587.

    Article  Google Scholar 

  • Wang, J., Kalinichev, A.G., and Kirkpatrick, R.J. (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et Cosmochimica Acta, 70, 562–582.

    Article  Google Scholar 

  • Wang, J.W., Kalinichev, A.G., and Kirkpatrick, R.J. (2004) Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 68, 3351–3365.

    Article  Google Scholar 

  • Wu, T.C., Bassett, W.A., Huang, W.L., Guggenheim, S., and Koster van Groos, A.F. (1997) Montmorillonite under high H2O pressures: Stability of hydrate phases, rehydration hysteresis, and the effect of interlayer cations. American Mineralogist, 82, 69–78.

    Article  Google Scholar 

  • Xie, X., Bethke, C.M., Li, S., Liu, X., and Zheng, H. (2001) Overpressure and petroleum generation and accumulation in the Dongying Depression of the Bohaiwan Basin, China. Geofluids, 1, 257–271.

    Article  Google Scholar 

  • Xu, W.Z., Johnston, C.T., Parker, P., and Agnew, S.F. (2000) Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite. Clays and Clay Minerals, 48, 120–131.

    Article  Google Scholar 

  • Zhang, L.H., Lu, X.C., Liu, X.D., Zhou, J.H., and Zhou, H.Q. (2014) Hydration and mobility of interlayer ions of (Nax, Cay)-montmorillonite: A molecular dynamics study. The Journal of Physical Chemistry C, 118, 29811–29821.

    Article  Google Scholar 

  • Zheng, Y. and Zaoui, A. (2013) Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite. Physica A: Statistical Mechanics and Its Applications, 392, 5994–6001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiancai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lu, X. & Boek, E.S. Changes in the Interlayer Structure and Thermodynamics of Hydrated Montmorillonite Under Basin Conditions: Molecular Simulation Approaches. Clays Clay Miner. 64, 503–511 (2016). https://doi.org/10.1346/CCMN.2016.0640412

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640412

Key Words

Navigation