Skip to main content
Log in

Intercalation of Ethylene Glycol in Smectites: Several Molecular Simulation Models Verified by X-Ray Diffraction Data

  • Published:
Clays and Clay Minerals

Abstract

Organo-clays represent a special challenge for molecular simulations because they require accurate representation of the clay and the organic/aqueous sections of the model system and accurate representation of the interactions between them. Due to the broad range of force-field models available, an important question to ask is which sets of parameters will best suit the molecular modeling of the organo-intercalated smectites? To answer this question, the structure of the ethylene glycol (EG)-smectite complex is used here as a testing model because the intercalation of EG in smectites provides a stable interlayer complex with relatively constant basal spacing.

Three smectite samples with substantially different layer charge and charge localization were selected for X-ray diffraction (XRD) measurements. Their molecular models were built and molecular-dynamics simulations performed using various combinations of the organic force fields (CGenFF, GAFF, CVFF, and OPLS-aa) with ClayFF and INTERFACE force fields used to describe smectites. The simulations covered a range of different EG and water contents. For every structure, the density distribution of interlayer species along the direction perpendicular to the layer plane was calculated and then used to optimize the XRD patterns for these simulated models.

A comparison of these results with experimental XRD patterns shows very large discrepancies in the structures and basal spacings obtained for different layer charges as well as for different force fields and their combinations. The most significant factor affecting the accuracy of the calculated XRD patterns was the selection of the clay-mineral force-field parameters. The second important conclusion is that a slight modification of the basal oxygen parameters for non-electrostatic interactions (increase of their effective atomic diameters) may be a simple and straightforward way to improve significantly the agreement between the modeled XRD patterns with experiments, especially for high-charge smectites. Generally, among organic force fields, the least accurate results were obtained with CGenFF. For unmodified ClayFF, its combination with GAFF gave the best results, while the two other sets (OPLS-aa and CVFF) gave the best results in combination with ClayFFmod. The INTERFACE and INTERFACEmod produced much better results for low-charge montmorillonite than for high-charge smectites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids. Oxford University Press, New York, 385 pp.

    Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration. Pp. 331–342 in: Intermolecular Forces (B. Pullman, editor). D. Reidel, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Brindley, G.W. (1966) Ethylene glycol and glycerol complexes of smectite and vermiculites. Clay Minerals, 6, 237–259.

    Article  Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M. Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. Journal of the American Chemical Society, 117, 5179–5197.

    Article  Google Scholar 

  • Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255–1266.

    Article  Google Scholar 

  • Cygan, R.T., Greathouse, J.A., Heinz, H., and Kalinichev, A.G. (2009) Molecular models and simulation of layered minerals. Journal of Materials Chemistry, 19, 2470–2481.

    Article  Google Scholar 

  • Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., and Hagler, A.T. (1988) Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function and Genetics, 4, 31–47.

    Article  Google Scholar 

  • Drits, V. and Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures. Theory and Applications to Microdivided Silicates and Carbons, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Duque-Redondo, E., Manzano, H., Epelde-Elezcano, N., Martínez-Martínez, V., and Lopez-Arbeloa, I. (2014) Molecular forces governing shear and tensile failure in clay-dye hybrid materials. Chemistry of Materials, 26, 4338–4345.

    Article  Google Scholar 

  • Eberl, D.D., Środoń, J., and Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296–326 in: Geochemical Processes at Mineral Surfaces (J.A. Davis and K.F. Hayes, editors). American Chemical Society Symposium Series, v323, Washington, D.C.

    Google Scholar 

  • Eberl, D.D., Środoń J., Lee M., Nadeau, P.H., and Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914–934.

    Google Scholar 

  • Ferrage, E., Sakharov, B.A., Michot, L.J., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jimenez-Ruiz, M., and Cuello, G.J. (2011) Hydration properties and interlayer organization of water and ions in synthetic Nasmectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. Journal of Physical Chemistry C, 115, 1867–1881.

    Article  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R.T., Montgomery, J.A., Vreven, J.T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mannucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, F., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Frakas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cislowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. (2004) Gaussian-94, Revision C.3. Gaussian, Inc. Pittsburgh Pennsylvania, USA.

    Google Scholar 

  • Greathouse, J.A., Hart, D.B., Bowers, G.M., Kirkpatrick, R.J., and Cygan, R.T. (2015) Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores. Journal of Physical Chemistry C, 119, 17126–17136.

    Article  Google Scholar 

  • Greathouse, J.A., Johnson, K.L., and Greenwell, H.C. (2014) Interaction of natural organic matter with layered minerals: Recent developments in computational methods at the nanoscale. Minerals, 4, 519–540.

    Article  Google Scholar 

  • Guillot, B. (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. Journal of Molecular Liquids, 101, 219–260.

    Article  Google Scholar 

  • Guvench, O. and MacKerell A.D. Jr. (2008) Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88.

    Article  Google Scholar 

  • Harward, M.E. and Brindley, G.W. (1965) Swelling properties of synthetic smectite in relation to lattice substitutions. Clays and Clay Minerals, 13, 209–222.

    Article  Google Scholar 

  • Harward, M.E., Carstea, D.D., and Sayegh, A.H. (1969) Properties of vermiculite and smectites: Expansion and collapse. Clays and Clay Minerals, 16, 437–447.

    Article  Google Scholar 

  • Heinz, H., Koerner, H., Anderson K.L., Vaia, R.A., and Farmer, B.L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Article  Google Scholar 

  • Heinz, H., Lin, T.J., Mishra, R.K., and Emami, F.S. (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29, 1754–1765.

    Article  Google Scholar 

  • Heinz, H. and Ramezani-Dakhel, H. (2016) Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews, 45, 412–448.

    Article  Google Scholar 

  • Hill, J.-R. and Sauer, J. (1995) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates. Journal of Physical Chemistry, 99, 9536–9550.

    Article  Google Scholar 

  • Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD — Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  Google Scholar 

  • Jorgensen, W.L. and Gao, J. (1986) Monte Carlo simulations of the hydration of ammonium and carboxylate ions. The Journal of Physical Chemistry, 90, 2174–2182.

    Article  Google Scholar 

  • Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236.

    Article  Google Scholar 

  • Kalinichev, A.G. (2001) Molecular simulations of liquid and supercritical water: Thermodynamics, structure, and hydrogen bonding. Pp. 83–129 in: Molecular Modeling Theory: Applications in the Geosciences (R.T. Cygan and J.D. Kubicki, editors). Reviews in Mineralogy & Geochemistry, 42, Mineralogical Society of America, Washington D.C.

    Article  Google Scholar 

  • Kalinichev, A.G., Kumar, P.P., and Kirkpatrick, R.J. (2010) Molecular dynamics computer simulations of the effects of hydrogen bonding on the properties of layered double hydroxides intercalated with organic acids. Philosophical Magazine, 90, 2475–2488.

    Article  Google Scholar 

  • Kumar, P.P., Kalinichev, A.G., and Kirkpatrick, R.J. (2006) Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: Insights from molecular dynamics simulation of citrate-intercalated hydrotalcite. Journal of Physical Chemistry B, 110, 3841–3844.

    Article  Google Scholar 

  • Lee, J.H. and Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350–357.

    Google Scholar 

  • Liu, X., Lu, X., Wang, R., Zhou, H., and Xu, S. (2007) Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study. Clays and Clay Minerals, 55, 554–564.

    Article  Google Scholar 

  • MacKerell, Jr. A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S. Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102, 3586–3616.

    Article  Google Scholar 

  • Manevitch, O.L. and Rutledge, G.C. (2004) Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation. Journal of Physical Chemistry B, 108, 1428–1435.

    Article  Google Scholar 

  • Morrow, C.P., Yazaydin, A.Ö., Krishnan, M., Bowers, G.M., Kalinichev, A.G., and Kirkpatrick, R.J. (2013) Structure, energetics, and dynamics of smectite clay interlayer hydration: Molecular dynamics and metadynamics investigation of Na-hectorite. Journal of Physical Chemistry C, 117, 5172–5187.

    Article  Google Scholar 

  • Mosser-Ruck, R., Devineau, K., Charpentier, D., and Cathelineau, M. (2005) Effects of ethylene glycol saturation protocols on XRD patterns: A critical review and discussion. Clays and Clay Minerals, 53, 631–638.

    Article  Google Scholar 

  • Mukherjee, G., Patra, N., Barua, P., and Jayaram, B. (2011) A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets (TPACM4). Journal of Computational Chemistry, 32, 893–907.

    Article  Google Scholar 

  • Ngouana Wakou, B.F. and Kalinichev, A.G. (2014) Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models. Journal of Physical Chemistry C, 118, 12758–12773.

    Article  Google Scholar 

  • Ortega-Castro, J., Hernández-Haro, N., Dove, M.T., Hernández-Laguna, A., and Saínz-Diaz, C.I. (2010) Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates. American Mineralogist, 95, 209–220.

    Article  Google Scholar 

  • Pintore, M., Deiana, S., Demontis, P., Manunza, B., Suffritti, G.B., and Gessa, C. (2001) Simulations of interlayer methanol in Ca-and Na-saturated montmorillonites using molecular dynamics. Clays and Clay Minerals, 49, 255–262.

    Article  Google Scholar 

  • Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19.

    Article  Google Scholar 

  • Reynolds, R.C. (1965) An X-ray study of an ethylene glycolmontmorillonite complex. American Mineralogist, 50, 990–1001.

    Google Scholar 

  • Reynolds, R.C. (1986) The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays and Clay Minerals, 34, 359.

    Article  Google Scholar 

  • Sato, T., Watanabe, T., and Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103–113.

    Article  Google Scholar 

  • Sato, H., Yamagishi, A., and Kawamura, K. (2001) Molecular simulation for flexibility of a single clay layer. Journal of Physical Chemistry B, 105, 7990–7997.

    Article  Google Scholar 

  • Schampera, B., Solc, R., Woche, S.K., Mikutta, R., Dultz, S., Guggenberger, G., and Tunega, D. (2015) Surface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations. Clay Minerals, 50, 353–367.

    Article  Google Scholar 

  • Skipper, N.T., Refson, K., and McConnell, J.D.C. (1991) Computer simulation of interlayer water in 2:1 clays. Journal of Chemical Physics, 94, 7434–7445.

    Article  Google Scholar 

  • Skipper, N.T., Chang, F.R.C., and Sposito, G. (1995) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. I: Methodology. Clays and Clay Minerals, 43, 285–293.

    Article  Google Scholar 

  • Smith, D.E. (1998) Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir, 14, 5959–5967.

    Article  Google Scholar 

  • Svensson, P.D. and Hansen, S. (2010) Intercalation of smectite with liquid ethylene glycol u` Resolved in time and space by synchrotron X-ray diffraction. Applied Clay Science, 48, 358–367.

    Article  Google Scholar 

  • Suter, J.L. and Coveney, P.V. (2009) Computer simulation study of the materials properties of intercalated and exfoliated poly (ethylene) glycol clay nanocomposites. Soft Matter, 5, 2239–2251.

    Article  Google Scholar 

  • Suter, J.L., Coveney, P.V., Anderson, R.L., Greenwell, H.C., and Cliffe, S. (2011) Rule based design of clay-swelling inhibitors. Energy & Environmental Science, 4, 4572–4586.

    Article  Google Scholar 

  • Suter, J.L., Groen, D., and Coveney, P.V. (2015) Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Advanced Materials, 27, 966–984.

    Article  Google Scholar 

  • Swadling, J.B., Coveney, P.V., and Greenwell, H.C. (2010) Clay minerals mediate folding and regioselective interactions of RNA: a large-scale atomistic simulation study. Journal of the American Chemical Society, 132, 13750–13764.

    Article  Google Scholar 

  • Szczerba, M., Kłapyta, Z., and Kalinichev, A.G. (2014) Ethylene glycol intercalation in smectites. Molecular dynamics simulation studies. Applied Clay Science, 91-92, 87–97.

    Article  Google Scholar 

  • Szczerba, M., Kuligiewicz, A., Derkowski, A., Gionis, V., Chryssikos, G.D., and Kalinichev, A.G. (2016) Structure and dynamics of water-smectite interfaces: Hydrogen bonding and the origin of the sharp O-Dw/O-Hw infrared band from molecular simulations. Clays and Clay Minerals, 64, 452–471.

    Article  Google Scholar 

  • Środoń, J. (1980) Precise identification of illite/smectite interstratification by X-ray powder diffraction. Clay and Clay Minerals, 28, 401–411.

    Article  Google Scholar 

  • Tambach, T.J., Bolhuis, P.G., Hensen, E.J., and Smit, B. (2006) Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states. Langmuir, 22, 1223–1234.

    Article  Google Scholar 

  • Teppen, B.J., Rasmussen, K.R., Bertsch, P.M., Miller, D.M., and Schafer, L. (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophillite, and beidellite. The Journal of Physical Chemistry B, 101, 1579–1587.

    Article  Google Scholar 

  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A.D. Jr. (2009) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31, 671–90.

    Google Scholar 

  • Wallqvist, A. and Mountain, R.D. (1999) Molecular models of water: Derivation and description. Pp. 183–247: Reviews in Computational Chemistry (D.B.B. Kenny and B. Lipkowitz, editors), vol. 13. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A. (2004) Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–74.

    Article  Google Scholar 

  • Wang, Y., Wohlert, J., Bergenstrahle-Wohlert, M., Kochumalayil, J.J., Berglund, L.A., Tu, Y., and Ågren, H. (2014) Molecular adhesion at clay nanocomposite interfaces depends on counterion hydration-molecular dynamics simulation of montmorillonite / xyloglucan. Biomacromolecules, 16, 257–265.

    Article  Google Scholar 

  • Zeng, Q.H., Yu, A.B., Lu, G.Q., and Standish, R.K. (2003) Molecular dynamics simulation of organic-inorganic nanocomposites: Layering behavior and interlayer structure of organoclays. Chemistry of Materials, 15, 4732–4738.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Szczerba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szczerba, M., Kalinichev, A.G. Intercalation of Ethylene Glycol in Smectites: Several Molecular Simulation Models Verified by X-Ray Diffraction Data. Clays Clay Miner. 64, 488–502 (2016). https://doi.org/10.1346/CCMN.2016.0640411

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640411

Key Words

Navigation