Skip to main content
Log in

Effect of Polydispersity of Clay Platelets on the Aggregation and Mechanical Properties of Clay at the Mesoscale

  • Published:
Clays and Clay Minerals

Abstract

The results from mesoscale simulations of the formation and evolution of microstructure for assemblies of Na-smectite particles based on assumed size distributions of individual clay platelets are presented here. The analyses predicted particle arrangements and aggregation (i.e. platelets linked in face-face configurations) and are used to link geometric properties of the microstructure and mechanical properties of the particle assemblies. Interactions between individual ellipsoidal clay platelets are represented using the Gay-Berne potential based on atomistic simulations of the free energy between two Na-smectite clay-platelets in liquid water, following a novel coarse-graining method developed previously. The current study describes the geometric (aggregate thickness, orientation, and porosity) and elastic properties in the ‘jammed states’ from the mesoscale simulations for selected ranges of clay particle sizes and confining pressures. The thickness of clay aggregates for monodisperse assemblies increases (with average stack thickness consisting of n = 3–8 platelets) with the diameter of the individualclay platelets and with the level of confining pressure. Aggregates break down at high confining pressures (50–300 atm) due to slippage between the platelets. Polydisperse simulations generate smaller aggregates (n = 2) and show much smaller effects of confining pressure. All assemblies show increased order with confining pressure, implying more anisotropic microstructure. The mesoscale simulations are also in good agreement with macroscopic compression behavior measured in conventional 1-D laboratory compression tests. The mesoscale assemblies exhibit cubic symmetry in elastic properties. The results for larger platelets (D = 1000 Å) are in good agreement with nano-indentation measurements on natural clays and shale samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.M. (1993) Particle size and shape effects in materials science: examples from polymer and paper systems. Clay Minerals, 28, 509–530.

    Article  Google Scholar 

  • Aghaei, A., Qomi, M.A., Kazemi, M.T., and Khoei, A.R. (2009) Stability and size-dependency of Cauchy-Born hypothesis in three-dimensional applications. International Journal of Solids and Structures, 46, 1925–1936.

    Article  Google Scholar 

  • Bobko, C. and Ulm, F.-J. (2008) The nano-mechanical morphology of shale. Mechanics of Materials, 40, 318–337.

    Article  Google Scholar 

  • Boek, E.S., Coveney, P.V., and Skipper, N.T. (1995) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117, 12608–12617.

    Article  Google Scholar 

  • Börgesson, L., Karnland, O., and Hökmark, H. (1988) Rheological properties of sodium smectite clay. SKB, Sweden (https://doi.org/www.skb.se/publikation/3305/TR88-30webb.pdf).

    Google Scholar 

  • Boulet, P., Greenwell, H.C., Stackhouse, S., and Coveney, P.V. (2006) Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. Journal of Molecular Structure: THEOCHEM, 762, 33–48.

    Article  Google Scholar 

  • Brown, W.M., Petersen, M.K., Plimpton, S.J., and Grest, G.S. (2009) Liquid crystal nanodroplets in solution. The Journal of Chemical Physics, 130, 044901.

    Article  Google Scholar 

  • Carrier, B., Vandamme, M., Pellenq, R.J.-M., and Van Damme, H. (2014) Elastic properties of swelling clay particles at finite temperature upon hydration. The Journal of Physical Chemistry C, 118, 8933–8943.

    Article  Google Scholar 

  • Casey, B.B.A. (2014) The consolidation and strength behavior of mechanically compressed fine-grained sediments. PhD thesis, Massachusetts Institute of Technology, Massachusetts, USA.

    Google Scholar 

  • Chen, C.-T., Ball, V., de Almeida Gracio, J.J., Singh, M.K., Toniazzo, V., Ruch, D., and Buehler, M.J. (2013) Self-assembly of tetramers of 5, 6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design. ACS Nano, 7, 1524–1532.

    Article  Google Scholar 

  • Coelho, D., Thovert, J.-F., and Adler, P.M. (1997) Geometrical and transport properties of random packings of spheres and aspherical particles. Physical Review E, 55, 1959–1978.

    Article  Google Scholar 

  • Delafargue, A. and Ulm, F.-J. (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. International Journal of Solids and Structures, 41, 7351–7360.

    Article  Google Scholar 

  • Derjaguin, B.V., Landau, L., and others (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico-Chimica URSS, 14, 633–662.

    Google Scholar 

  • Dijkstra, M., Hansen, J.P., and Madden, P.A. (1995) Gelation of a clay colloid suspension. Physical Review Letters, 75, 2236.

    Article  Google Scholar 

  • Ebrahimi, D., Pellenq, R.J.-M., and Whittle, A.J. (2012) Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir, 28, 16855–16863.

    Article  Google Scholar 

  • Ebrahimi, D., Whittle, A.J., and Pellenq, sR.J.-M. (2014) Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. The Journal of Chemical Physics, 140, 154309.

    Article  Google Scholar 

  • Ferrage, E., Hubert, F., Tertre, E., Delville, A., Michot, L.J., and Levitz, P. (2015) Modeling the arrangement of particles in natural swelling-clay porous media using three-dimensional packing of elliptic disks. Physical Review E, 91, 062210.

    Article  Google Scholar 

  • Gabriel, A.T., Meyer, T., and Germano, G. (2008) Molecular graphics of convex body fluids. Journal of Chemical Theory and Computation, 4, 468–476.

    Article  Google Scholar 

  • Gay, J.G. and Berne, B.J. (1981) Modification of the overlap potential to mimic a linear site-site potential. The Journal of Chemical Physics, 74, 3316–3319.

    Article  Google Scholar 

  • Heinz, H., Koerner, H., Anderson, K.L., Vaia, R.A., and Farmer, B.L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Article  Google Scholar 

  • Hensen, E.J.M., Tambach, T.J., Bliek, A., and Smit, B. (2001) Adsorption isotherms of water in Li-, Na-, and Kmontmorillonite by molecular simulation. The Journal of Chemical Physics, 115, 3322–3329.

    Article  Google Scholar 

  • Hetzel, F., Tessier, D., Jaunet, A.-M., and Doner, H. (1994) The microstructure of three Na+ smecites: The importance of particle geometry on dehydration and rehydration. Clays and Clay Minerals, 42, 242–248.

    Article  Google Scholar 

  • Hoover, W.G. (1985) Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 31, 1695.

    Article  Google Scholar 

  • Israelachvili, J.N. and Pashley, R.M. (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 306, 249–250.

    Article  Google Scholar 

  • Jardat, M., Dufrêche, J.-F., Marry, V., Rotenberg, B., and Turq, P. (2009) Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays. Physical Chemistry Chemical Physics, 11, 2023–2033.

    Article  Google Scholar 

  • Kutter, S., Hansen, J.-P., Sprik, M., and Boek, E. (2000) Structure and phase behavior of a model clay dispersion: A molecular-dynamics investigation. The Journal of Chemical Physics, 112, 311–322.

    Article  Google Scholar 

  • Li, H., Kang, T., Zhang, B., Zhang, J., and Ren, J. (2016) Influence of interlayer cations on structural properties of montmorillonites: A dispersion-corrected density functional theory study. Computational Materials Science, 117, 33–39.

    Article  Google Scholar 

  • Likos, W.J. and Lu, N. (2006) Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+-and Ca2+-smectite. Clays and Clay Minerals, 54, 515–528.

    Article  Google Scholar 

  • Marcial, D., Delage, P., and Cui, Y.J. (2002) On the high stress compression of bentonites. Canadian Geotechnical Journal, 39, 812–820.

    Article  Google Scholar 

  • Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Shamaev, M.Y., Berlin, A.A., Balabaev, N.K., and Rutledge, G.C. (2008a) Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 1. Isolated clay nanoplate. The Journal of Physical Chemistry B, 112, 2964–2969.

    Article  Google Scholar 

  • Mazo, M.A., Manevitch, L.I., Gusarova, E.B., Berlin, A.A., Balabaev, N.K., and Rutledge, G.C. (2008b) Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. II. Hydrated montmorillonite crystal. The Journal of Physical Chemistry C, 112, 17056–17062.

    Article  Google Scholar 

  • Mesri, G. and Olson, R.E. (1971) Consolidation characteristics of montmorillonite. Géotechnique, 21, 341–352.

    Article  Google Scholar 

  • Murray, H.H. (1991) Overview — clay mineral applications. Applied Clay Science, 5, 379–395.

    Article  Google Scholar 

  • Mystkowski, K., Środoń, J., and Elsass, F. (2000) Mean thickness and thickness distribution of smectite crystallites. Clay Minerals, 35, 545–557.

    Article  Google Scholar 

  • Nosé, S. (1984) A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81, 511–519.

    Article  Google Scholar 

  • Onsager, L. (1949) The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 51, 627–659.

    Article  Google Scholar 

  • Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics, 52, 7182–7190.

    Article  Google Scholar 

  • Pashley, R.M. and Israelachvili, J.N. (1984) Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. Journal of Colloid and Interface Science, 101, 511–523.

    Article  Google Scholar 

  • Perdigon-Aller, A.C., Aston, M., and Clarke, S.M. (2005) Preferred orientation in filtercakes of kaolinite. Journal of Colloid and Interface Science, 290, 155–165.

    Article  Google Scholar 

  • Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1–19.

    Article  Google Scholar 

  • Pons, C.H., Tessier, D., Rhaiem, H.B., Tchoubar, D., Van Olphen, H., and Veniale, F., editors (1981) A comparison between X-ray studies and electron microscopy observations of smectite fabric. Pp. 177–185 in: Proceedings of the International Clay Conference. Elsevier, Amsterdam.

  • Rhaiem, B. (1985) Factors affecting the microstructure of smectites-role of cation and history of applied stresses. Pp. 292–297 in: Proceedings of the International Clay Conference (C.H. Pons et al., editors). Elsevier, Amsterdam.

    Google Scholar 

  • Sjoblom, K.J. (2015) Coarse-grained molecular dynamics approach to simulating clay behavior. Journal of Geotechnical and Geoenvironmental Engineering, 06015013.

    Google Scholar 

  • Suter, J.L., Coveney, P.V., Greenwell, H.C., and Thyveetil, M.-A. (2007) Large-scale molecular dynamics study of montmorillonite clay: emergence of undulatory fluctuations and determination of material properties. The Journal of Physical Chemistry C, 111, 8248–8259.

    Article  Google Scholar 

  • Suter, J.L., Groen, D., and Coveney, P.V. (2015) Clay-polymer nanocomposites: Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Advanced Materials, 27, 957–957.

    Article  Google Scholar 

  • Tessier, D. and Pedro, G. (1981) Electron microscopy study of Na smectite fabricùrole of layer charge, salt concentration and suction parameters. Pp. 6–12 in: Proceedings of the International Clay Conference (C.H. Pons et al., editors). Elsevier, Amsterdam.

    Google Scholar 

  • Thyveetil, M.-A., Coveney, P.V., Suter, J.L., and Greenwell, H.C. (2007) Emergence of undulations and determination of materials properties in large-scale molecular dynamics simulation of layered double hydroxides. Chemistry of Materials, 19, 5510–5523.

    Article  Google Scholar 

  • Verwey, E.J.W. and Overbeek, J.T.G. (1999) Theory of the Stability of Lyophobic Colloids. Dover Publishing Co., Mineola, New York.

    Google Scholar 

  • Whitley, H.D. and Smith, D.E. (2004) Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays. The Journal of Chemical Physics, 120, 5387–5395.

    Article  Google Scholar 

  • Whittle, A.J., Ebrahimi, D., and Pellenq, R.J.-M. (2016) Mesoscale modeling and properties of clay aggregates. Pp. 241–253 in: Holistic Simulation of Geotechnical Installation Processes (T. Triantafyllidis, editor). Springer, Berlin.

    Chapter  Google Scholar 

  • Young, D.A. and Smith, D.E. (2000) Simulations of clay mineral swelling and hydration: Dependence upon interlayer ion size and charge. The Journal of Physical Chemistry B, 104, 9163–9170.

    Article  Google Scholar 

  • Zartman, G.D., Liu, H., Akdim, B., Pachter, R., and Heinz, H. (2010) Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress. The Journal of Physical Chemistry C, 114, 1763–1772.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland J.-M. Pellenq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, D., Whittle, A.J. & Pellenq, R.JM. Effect of Polydispersity of Clay Platelets on the Aggregation and Mechanical Properties of Clay at the Mesoscale. Clays Clay Miner. 64, 425–437 (2016). https://doi.org/10.1346/CCMN.2016.0640407

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640407

Key Words

Navigation