Skip to main content
Log in

Investigation of the Interlayer Organization of Water And Ions in Smectite from the Combined Use of Diffraction Experiments and Molecular Simulations. A Review of Methodology, Applications, and Perspectives

  • Published:
Clays and Clay Minerals

Abstract

Investigation of the organization of interlayer water and cations in smectite is a permanent topic in clay science for environmental science, civil engineering, materials science, and industrial applications. Experimental X-ray (or neutron) diffraction methods and molecular simulations are key techniques to probe the organization of the smectite structure at a similar molecular length scale. The combination of both of these experimental and numerical methods represents a complementary approach to reveal the structural heterogeneity of real samples, design and model a wide range of smectite structures, and validate the simulation results through comparison with experimental data.

This paper first revisits establishment of the original interlayer model as developed in the 1930s for the organization of water and ions in the smectite structure using X-ray diffraction (XRD) techniques. Then, based on a simplified approach, key theoretical tools are provided to calculate XRD pattern 00l reflections for a periodic smectite structure with a wide range of interlayer compositions and organizations using conventional spreadsheet software. In addition to educational purposes, this theoretical description is used to describe the principal parameters governing the positions and intensities of experimental XRD 00l reflections. This calculation toolbox is also used to determine better the layer-to-layer distances considered in molecular simulations and to validate these simulations through a detailed collation procedure using experimental data.

Recent examples of the application of such a procedure to collate experimental diffraction data and molecular simulations are presented for the specific case of deciphering the molecular organization of interlayer water and cations in the different smectite hydrates (mono-, bi-, and tri-hydrated layers). The extension of this approach to the interlayer refinement of organo-clays is also detailed, and perspectives regarding the characterization of other lamellar compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akai, J., Nomura, N., Matsushita, S., Kudo, H., Fukuhara, H., Matsuoka, S., and Matsumoto, J. (2013) Mineralogical and geomicrobial examination of soil contamination by radioactive Cs due to 2011 Fukushima Daiichi nuclear power plant accident. Physics and Chemistry of the Earth, Parts A/B/C, 58–60, 57–67.

    Google Scholar 

  • Aplin, A.C., Matenaar, I.F., McCarty, D.K., and van der Pluijm, B.A. (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and porescale properties of deep-water Gulf of Mexico mudstones. Clays and Clay Minerals, 54, 500–514.

    Google Scholar 

  • Aristilde, L., Lanson, B., and Charlet, L. (2013) Interstratification patterns from the pH-dependent intercalation of a tetracycline antibiotic within montmorillonite layers. Langmuir, 29, 4492–4501.

    Google Scholar 

  • Bailey, S.W. (1982) Nomenclature for regular interstratifications. American Mineralogist, 67, 394–398.

    Google Scholar 

  • Ben Brahim, J.B., Armagan, N., Besson, G., and Tchoubar, C. (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Homogeneous two-water-layer Na-beidellite. Journal of Applied Crystallography, 16, 264–269.

    Google Scholar 

  • Ben Brahim, J., Besson, G., and Tchoubar, C. (1984) Etude des profils des bandes de diffraction X dune beidellite-Na hydratée à deux couches deau. Détermination du mode dempilement des feuillets et des sites occupés par leau. Journal of Applied Crystallography, 17, 179–188.

    Google Scholar 

  • Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L.J., Masion, A., and Thomas, F. (1995) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+ exchanged forms. Clays and Clay Minerals, 43, 324–336.

    Google Scholar 

  • Bergmann, J. and Kleeberg, R. (1998) Rietveld analysis of disordered layer silicates. Pp. 300–305 in: Proceedings of the European Powder Diffraction (EPDIC5) (R. Delhez and E.J. Mittemeijer, editors).

    Google Scholar 

  • Bethke, C.M. and Altaner, S.P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays and Clay Minerals, 34, 136–145.

    Google Scholar 

  • Botan, A., Rotenberg, B., Marry, V., Turq, P., and Noetinger, B. (2010) Carbon dioxide in montmorillonite clay hydrates: Thermodynamics, structure, and transport from molecular simulation. Journal of Physical Chemistry C, 114, 14962–14969.

    Google Scholar 

  • Bradley, W.F., Grim, R.E., and Clark, G.F. (1937) A study of the behavior of montmorillonite upon wetting. Zeitschrift für Kristallographie, 97, 216–222.

    Google Scholar 

  • Breu, J., Seidl, W., Stoll, A.J., Lange, K.G., and Probst, T.U. (2001) Charge homogeneity in synthetic fluorohectorite. Chemistry of Materials, 13, 4213–4220.

    Google Scholar 

  • Brigatti, M.F., Galán, E., and Theng, B.K.G. (2006) Structure and mineralogy of clay minerals. Pp. 19–86 in: Handbook of Clay Science 1 (F. Bergaya, G.K.B. Theng, and G. Lagaly, editors). Developments in Clay Science, 1. Elsevier, Amsterdam.

    Google Scholar 

  • Busch, A., Alles, S., Gensterblum, Y., Prinz, D., Dewhurst, D., Raven, M., Stanjek, H., and Krooss, B. (2008) Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2, 297–308.

    Google Scholar 

  • Calarge, L., Lanson, B., Meunier, A., and Formoso, M.L. (2003) The smectitic minerals in a bentonite deposit from Melo (Uruguay). Clay Minerals, 38, 25–34.

    Google Scholar 

  • Cases, J.M., Bérend, I., Besson, G., François, M., Uriot, J.P., Thomas, F., and Poirier, J.E. (1992) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 2730–2739.

    Google Scholar 

  • Cases, J.M., Bérend, I., François, M., Uriot, J.P., Michot, L.J., and Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 8–22.

    Google Scholar 

  • Christidis, G.E. and Eberl, D.D. (2003) Determination of layer-charge characteristics of smectites. Clays and Clay Minerals, 51, 644–655.

    Google Scholar 

  • Claret, F., Sakharov, B.A., Drits, V.A., Velde, B., Meunier, A., Griffault, L., and Lanson, B. (2004) Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution. Clays and Clay Minerals, 52, 515–532.

    Google Scholar 

  • Cuadros, J. (1997) Interlayer cation effects on the hydration state of smectite. American Journal of Science, 297, 829–841.

    Google Scholar 

  • Cygan, R.T., Liang, J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255–1266.

    Google Scholar 

  • Cygan, R.T., Greathouse, J.A., Heinz, H., and Kalinichev, A.G. (2009) Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470–2481.

    Google Scholar 

  • Dazas, B., Lanson, B., Breu, J., Robert, J., Pelletier, M., and Ferrage, E. (2013) Smectite fluorination and its impact on interlayer water content and structure: A way to fine tune the hydrophilicity of clay surfaces? Microporous and Mesoporous Materials, 181, 233–247.

    Google Scholar 

  • Dazas, B., Ferrage, E., Delville, A., and Lanson, B. (2014) Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the grand canonical ensemble. American Mineralogist, 99, 1724–1735.

    Google Scholar 

  • Dazas, B., Lanson, B., Delville, A., Robert, J., Komarneni, S., Michot, L.J., and Ferrage, E. (2015) Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. Journal of Physical Chemistry C, 119, 4158–4172.

    Google Scholar 

  • de la Calle, C. and Suquet, H. (1988) Vermiculite. Pp. 455–496 in: Hydrous Phyllosilicates (Exclusive Of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Chantilly, Virginia, USA.

    Google Scholar 

  • Delville, A. (1991) Modeling the clay-water interface. Langmuir, 7, 547–555.

    Google Scholar 

  • Delville, A. (1993) Structure and properties of confined liquids: A molecular model of the clay-water interface. Journal of Physical Chemistry, 97, 9703–97102.

    Google Scholar 

  • Drits, V., Srodon, J., and Eberl, D.D. (1997a) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation. Clays and Clay Minerals, 45, 461–475.

    Google Scholar 

  • Drits, V.A., Sakharov, B.A., Lindgreen, H., and Salyn, A. (1997b) Sequential structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from the North Sea and Denmark. Clay Minerals, 32, 351–371.

    Google Scholar 

  • Drits, V.A. and Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons. Springer-Verlag, Berlin, 371 pp.

    Google Scholar 

  • Dzene, L., Tertre, E., Hubert, F., and Ferrage, E. (2015) Nature of the sites involved in the process of cesium desorption from vermiculite. Journal of Colloid and Interface Science, 455, 254–260.

    Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A. (2005a) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90, 1358–1374.

    Google Scholar 

  • Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B.A., and Drits, V.A. (2005b) New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials, 17, 3499–3512.

    Google Scholar 

  • Ferrage, E., Tournassat, C., Rinnert, E., and Lanson, B. (2005c) Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: Analytical chemistry, chemical modelling and XRD profile modelling study. Geochimica et Cosmochimica Acta, 69, 2797–2812.

    Google Scholar 

  • Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E., and Drits, V.A. (2007a) Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist, 92, 1731–1743.

    Google Scholar 

  • Ferrage, E., Kirk, C.A., Cressey, G., and Cuadros, J. (2007b) Dehydration of Ca-montmorillonite at the crystal scale. Part I: Structure evolution. American Mineralogist, 92, 994–1006.

    Google Scholar 

  • Ferrage, E., Lanson, B., Michot, L.J., and Robert, J. (2010) Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. Journal of Physical Chemistry C, 114, 4515–4526.

    Google Scholar 

  • Ferrage, E., Sakharov, B.A., Michot, L.J., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jiménez-Ruiz, M., and Cuello, G.J. (2011a) Hydration properties and interlayer organization of water and ions in synthetic Nasmectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data. Journal of Physical Chemistry C, 115, 1867–1881.

    Google Scholar 

  • Ferrage, E., Vidal, O., Mosser-Ruck, R., Cathelineau, M., and Cuadros, J. (2011b) A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American Mineralogist, 96, 207–223.

    Google Scholar 

  • Fripiat, J.J., Cruz, M.I., Bohor, B.F., and Thomas, J. Jr (1974) Interlamellar adsorption of carbon dioxide by smectites. Clays and Clay Minerals, 22, 23–30.

    Google Scholar 

  • Gates, W.P., Bouazza, A., and Churchman, G.J. (2009) Bentonite clay keeps pollutants at bay. Elements, 5, 105–110.

    Google Scholar 

  • Gieseking, J.E. (1939) The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals. Soil Science, 47, 1–14.

    Google Scholar 

  • Giesting, P., Guggenheim, S., Koster van Groos, A.F., and Busch, A. (2012a) X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. Environmental Science and Technology, 46, 5623–5630.

    Google Scholar 

  • Giesting, P., Guggenheim, S., Koster van Groos, A.F., and Busch, A. (2012b) Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control, 8, 73–81.

    Google Scholar 

  • Glaeser, R. and Méring, J. (1954) Isothermes dhydratation des montmorillonites bi-ioniques (Ca, Na). Clay Mineral Bulletin, 2, 188–193.

    Google Scholar 

  • Glaeser, R. and Méring, J. (1968) Domaines dhydratation des smectites. Comptes-Rendus de lAcadémie des Sciences de Paris, 267, 463–466.

    Google Scholar 

  • Glaeser, R., Mantine, I., and Méring, J. (1967) Observations sur la beidellite. Bulletin du Groupe Français des Argiles, 19, 125–130.

    Google Scholar 

  • Gruner, J.W. (1932) Crystal structure of kaolinite. Zeitschrift für Kristallographie, 83, 75–88.

    Google Scholar 

  • Gruner, J.W. (1934) The structures of vermiculites and their collapse by dehydration. American Mineralogist, 19, 557–575.

    Google Scholar 

  • Guinier, A. (1964) Théorie et Technique de la radiocristallographie. Dunod, Paris, 740 pp.

    Google Scholar 

  • Harris, G.L., Nicholls, P.H., Bailey, S.W., Howse, K.R., and Mason, D.J. (1994) Factors influencing the loss of pesticides in drainage from a cracking clay soil. Journal of Hydrology, 159, 235–253.

    Google Scholar 

  • Heinz, H., Koerner, H., Anderson, K.L., Vaia, R.A., and Farmer, B.L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Google Scholar 

  • Heinz, H., Lin, T., Mishra, R., and Emami, F.S. (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29, 1754–1765.

    Google Scholar 

  • Hendricks, S. and Teller, E. (1942) X-ray interference in partially ordered layer lattices. Journal of Chemical Physics, 10, 147–167.

    Google Scholar 

  • Hendricks, S.B. and Fry, W.H. (1930) The results of X-Ray and microscopical examinations of soil colloids. Soil Science, 29, 457–480.

    Google Scholar 

  • Hendricks, S.B. and Jefferson, M.E. (1938) Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays. American Mineralogist, 23, 863–875.

    Google Scholar 

  • Hendricks, S.B., Nelson, R.A., and Alexander, L.T. (1940) Hydration mechanism of the clay mineral montmorillonite saturated with various cations 1. Journal of the American Chemical Society, 62, 1457–1464.

    Google Scholar 

  • Hofmann, U. and Bilke, W. (1936) Über die innerkristalline Quellung und das basenaustauschvermogen des montmorillonits. Kolloid-Zeitschrift, 77, 238–251.

    Google Scholar 

  • Hofmann, U., Endell, K., and Wilm, D. (1933) Kristallstruktur und quellung von Montmorillonit (Das Tonmineral der Bentonittone). Zeitschrift für Kristallographie, 86, 340–348.

    Google Scholar 

  • Holmboe, M., Wold, S., and Jonsson, M. (2012) Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydrology, 128, 19–32.

    Google Scholar 

  • Howard, S.A. and Preston, K.D. (1989) Profile fitting of powder diffraction patterns. Pp. 217–275 in: Modern Powder Diffraction (D.L. Bish and J.E. Post, editors). Reviews in Mineralogy, 20. Mineralogical Society of America, Washington DC.

    Google Scholar 

  • Hubert, F., Caner, L., Meunier, A., and Ferrage, E. (2012) Unraveling complex <2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity. American Mineralogist, 97, 384–398.

    Google Scholar 

  • Inoue, A., Lanson, B., Marques-Fernandes, M., Sakharov, B.A., Murakami, T., Meunier, A., and Beaufort, D. (2005) Illite-smectite mixed-layer minerals in the hydrothermal alteration of volcanic rocks: I. One-dimensional XRD structure analysis and characterization of component layers. Clays and Clay Minerals, 53, 423–439.

    Google Scholar 

  • Iwasaki, T. and Watanabe, T. (1988) Distribution of Ca and Na ions in dioctahedral smectites and interstratified dioctahedral mica/smectites. Clays and Clay Minerals, 36, 73–82.

    Google Scholar 

  • Lanson, B. (2011) Modelling of X-ray diffraction profiles: Investigation of defective lamellar structure crystal chemistry. Pp. 151–202 in: Bulk and Surface Structures of Layer Silicates and Oxides: Theoretical Aspects and Applications (M.F. Brigatti and A. Mottana, editors). EMU Notes in Mineralogy 11, European Mineralogical Union.

    Google Scholar 

  • Lanson, B., Sakharov, B.A., Claret, F., and Drits, V.A. (2009) Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multi-specimen method. American Journal of Science, 309, 476–516.

    Google Scholar 

  • Lanson, B., Ferrage, E., Hubert, F., Prêt, D., Mareschal, L., Turpault, M., and Ranger, J. (2015) Experimental aluminization of vermiculite interlayers: An X-ray diffraction perspective on crystal chemistry and structural mechanisms. Geoderma, 249-250, 28–39.

    Google Scholar 

  • Lindgreen, H., Drits, V.A., Sakharov, B.A., Jakobsen, H.J., Salyn, A.L., Dainyak, L.G., and Krøyer, H. (2002) The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. Clay Minerals, 37, 429–450.

    Google Scholar 

  • Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109–129.

    Google Scholar 

  • Maegdefrau, E. and Hofmann, U. (1937) Die Kristalstruktur des montmorillonits. Zeitschrift für Kristallographie, 98, 299–323.

    Google Scholar 

  • Marshall, C.E. (1935) Layer lattices and base-exchange clays. Zeitschrift für Kristallographie, 91, 433–449.

    Google Scholar 

  • Martins, M.L., Gates, W.P., Michot, L., Ferrage, E., Marry, V., and Bordallo, H.N. (2014) Neutron scattering, a powerful tool to study clay minerals. Applied Clay Science, 96, 22–35.

    Google Scholar 

  • McCarty, D.K., Sakharov, B.A., and Drits, V.A. (2008) Early clay diagenesis in Gulf Coast sediments: New insights from XRD profile modeling. Clays and Clay Minerals, 56, 359–379.

    Google Scholar 

  • McCarty, D.K., Sakharov, B.A., and Drits, V.A. (2009) New insights into smectite illitization: A zoned K-bentonite revisited. American Mineralogist, 94, 1653–1671.

    Google Scholar 

  • Méring, J. (1946) On the hydration of montmorillonite. Transactions of the Faraday Society, 42, B205–B219.

    Google Scholar 

  • Méring, J. (1949) L’interfé rence des rayons X dans les systèmes àstratification dés ordonée. Acta Crystallographica, 2, 371–377.

    Google Scholar 

  • Méring, J. and Glaeser, R. (1954) Sur le rôle de la valence des cations échangeables dans la montmorillonite. Bulletin de la Société Francaise de Minéralogie et Cristallographie, 77, 519–530.

    Google Scholar 

  • Michels, L., Fossum, J.O., Rozynek, Z., Hemmen, H., Rustenberg, K., Sobas, P.A., Kalantzopoulos, G.N., Knudsen, K.D., Janek, M., Plivelic, T.S., and da Silva, G.J. (2015) Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations. Scientific Reports, 5, 8775.

    Google Scholar 

  • Michot, L.J., Ferrage, E., Jiménez-Ruiz, M., Boehm, M., and Delville, A. (2012) Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study. Journal of Physical Chemistry C, 116, 16619–16633.

    Google Scholar 

  • Möller, M.W., Hirsemann, D., Haarmann, F., Senker, J., and Breu, J. (2010) Facile scalable synthesis of rectorites. Chemistry of Materials, 22, 186–196.

    Google Scholar 

  • Moore, D.M. and Hower, J. (1986) Ordered interstratification of dehydrated and hydrated Na-smectite. Clays and Clay Minerals, 34, 379–384.

    Google Scholar 

  • Moore, D.M. and Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 322 pp.

    Google Scholar 

  • Nagelschmidt, G. (1936) On the lattice shrinkage and structure of montmorillonite. Zeitschrift für Kristallographie, 93, 481–487.

    Google Scholar 

  • Pezerat, H. (1967) Recherches sur la position des cations échangeables et de l’eau dans les montmorillonites. Comptes-Rendus de lAcadémie des Sciences de Paris, 265, 529–532.

    Google Scholar 

  • Pezerat, H. and Méring, J. (1958) Dé tection des cations échangeable de la montmorillonite par l’emploi des séries diffé rences. Bulletin du Groupe Français des Argiles, 10, 25–26.

    Google Scholar 

  • Prêt, D., Ferrage, E., Tertre, E., Pelletier, M., Robinet, J.C., Faurel, M., Bihannic, I., and Hubert, F. (2013) X-ray tomography and impregnation methods to analyze pore space heterogeneities at the hydrated state. Pp. 75–83 in: Proceeding of the Workshop of the Nuclear Energy Agency Clayclub Clay Characterisation from Nanoscopic to Microscopic Resolution. Karlsruhe, 6–8 September, NEA/RWM/CLAYCLUB, OECD-NEA Press, Karlsruhe.

    Google Scholar 

  • Reynolds, R.C. Jr. (1965) An X-ray study of ethylene glycolmontmorillonite complex. American Mineralogist, 50, 990, 1001.

    Google Scholar 

  • Reynolds, R.C. Jr. (1967) Interstratified clay systems: Calculation of the total one-dimensional diffraction function. American Mineralogist, 52, 661–672.

    Google Scholar 

  • Reynolds, R.C. Jr. (1968) The effect of particle size on apparent lattice spacings. Acta Crystallographica Section A, 24, 319–320.

    Google Scholar 

  • Reynolds, R.C. Jr. (1985) NEWMOD: A Computer Program for the Calculation of One-Dimensional Patterns of Mixed-Layered Clays. RC Reynolds, Hanover, NH.

    Google Scholar 

  • Reynolds, R.C. Jr. (1986) The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays and Clay Minerals, 34, 359–367.

    Google Scholar 

  • Reynolds, R.C. Jr. (1989) Diffraction by small and disordered crystals. Pp. 145–182 in: Modern Powder Diffraction (D.A. Bish and J.E. Post, editors). Reviews in Mineralogy, 20. Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Ross, M. (1968) X-ray diffraction effects by non-ideal crystals of biotite, muscovite, montmorillonite, mixed-layer clays, graphite, and periclase. Zeitschrift für Kristallographie, 126, 80–97.

    Google Scholar 

  • Sakharov, B.A. and Drits, V.A. (1973) Mixed-layer kaolinite-montmorillonite: A comparison of observed and calculated diffraction patterns. Clays and Clay Minerals, 21, 15–17.

    Google Scholar 

  • Sakharov, B.A. and Lanson, B. (2013) X-ray identification of mixed-layer structures. Modelling of diffraction effects. Pp. 51–135 in: Handbook of Clay Science. Developments in Clay, 2nd ed. Part B: Techniques and Applications 5B (F. Bergaya and G. Lagaly, editors). Science and Publishing House, Elsevier, Amsterdam.

    Google Scholar 

  • Sakharov, B.A., Naumov, A.S., and Drits, V.A. (1982a) X-ray diffraction by mixed-layer structures with random distribution of stacking faults. Doklady Akademii Nauk SSSR, 265, 339–343.

    Google Scholar 

  • Sakharov, B.A., Naumov, A.S., and Drits, V.A. (1982b) X-ray intensities scattered by layer structure with short range ordering parameters S>1 and G>1. Doklady Akademii Nauk SSSR, 265, 871–874.

    Google Scholar 

  • Sakharov, B.A., Lindgreen, H., Salyn, A., and Drits, V.A. (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays and Clay Minerals, 47, 555–566.

    Google Scholar 

  • Sato, T., Watanabe, T., and Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103–113.

    Google Scholar 

  • Sato, T., Murakami, T., and Watanabe, T. (1996) Change in layer charge of smectites and smectite layers in illite/smectite during diagenetic alteration. Clays and Clay Minerals, 44, 460–469.

    Google Scholar 

  • Shashikala, H.D., Suryanarayana, S.V., and Nagender Naidu, S.V. (1993) Debye temperature and mean-square amplitudes of vibration of Ti3Al alloys. Journal of Applied Crystallography, 26, 602–605.

    Google Scholar 

  • Skipper, N.T., Refson, K., and McConnell, J.D.C. (1989) Computer calculation of water-clay interactions using atomic pair potentials. Clay Minerals, 24, 411–425.

    Google Scholar 

  • Skipper, N.T., Refson, K., and McConnell, J.D.C. (1991) Computer simulation of interlayer water in 2:1 clays. Journal of Chemical Physics, 94, 7434–7445.

    Google Scholar 

  • Skipper, N.T., Chang, F.R.C., and Sposito, G. (1995) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays and Clay Minerals, 43, 285–293.

    Google Scholar 

  • Smith, D.E. (1998) Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir, 14, 5959–5967.

    Google Scholar 

  • Stanjek, H. (2002) XRD peak migration and apparent shift of cell-edge lengths of nano-sized hematite, goethite and lepidocrocite. Clay Minerals, 37, 629–638.

    Google Scholar 

  • Striolo, A. (2011) From interfacial water to macroscopic observables: A review. Adsorption Science & Technology, 29, 211–258.

    Google Scholar 

  • Suquet, H. and Pezerat, H. (1987) Parameters influencing layer stacking types in saponite and vermiculite: A review. Clays and Clay Minerals, 35, 353–362.

    Google Scholar 

  • Szczerba, M., Klapyta, Z., and Kalinichev, A. (2014) Ethylene glycol intercalation in smectites. Molecular dynamics simulation studies. Applied Clay Science, 91, 87–97.

    Google Scholar 

  • Tertre, E., Prêt, D., and Ferrage, E. (2011a) Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 1: Chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. Journal of Colloid and Interface Science, 353, 248–256.

    Google Scholar 

  • Tertre, E., Prêt, D., and Ferrage, E. (2011b) Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 2: Understanding the effect of the m/V ratio. Implications for pore water composition and element transport in natural media. Journal of Colloid and Interface Science, 363, 334–347.

    Google Scholar 

  • Tessier, D., Bouzigues, B., Favrot, J.C., and Valles, V. (1992) Influence of decimetric microrelief on clay texture evolution of hydromorphic soils of the Garonne River-differentiation of vertic and prismatic structures. Comptes Rendus de l’Académie des sciences Paris Série II, 315, 1027–1032.

    Google Scholar 

  • Trunz, V. (1976) Influence of crystallite size on apparent basal spacing of kaolinite. Clays and Clay Minerals, 24, 84–87.

    Google Scholar 

  • Ufer, K., Kleeberg, R., Bergmann, J., and Dohrmann, R. (2012) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. I. One-dimensional patterns. Clays and Clay Minerals, 60, 507–534.

    Google Scholar 

  • Vasseur, G., Djeran-Maigre, I., Grunberger, D., Rousset, G., Tessier, D., and Velde, B. (1995) Evolution of structural and physical parameters of clays during experimental compaction. Marine and Petroleum Geology, 12, 941–954.

    Google Scholar 

  • Viennet, J., Hubert, F., Ferrage, E., Tertre, E., Legout, A., and Turpault, M. (2015) Investigation of clay mineralogy in a temperate acidic soil of a forest using X-ray diffraction profile modeling: Beyond the HIS and HIV description. Geoderma, 241-242, 75–86.

    Google Scholar 

  • Waasmaier, D. and Kirfel, A. (1995) New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A, 51, 416–431.

    Google Scholar 

  • Yang, N. and Yang, X. (2011) Molecular simulation of swelling and structure for Na-Wyoming montmorillonite in supercritical CO2. Molecular Simulation, 37, 1063–1070.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Ferrage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrage, E. Investigation of the Interlayer Organization of Water And Ions in Smectite from the Combined Use of Diffraction Experiments and Molecular Simulations. A Review of Methodology, Applications, and Perspectives. Clays Clay Miner. 64, 348–373 (2016). https://doi.org/10.1346/CCMN.2016.0640401

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640401

Key Words

Navigation