Skip to main content
Log in

Application of Multivariate Analysis in the Assessment of Ceramic Raw Materials

  • Published:
Clays and Clay Minerals

Abstract

The aim of the present study was to discriminate between distinct types of clay units by applying multivariate statistical techniques, which have seldom been applied to the exploitation of ceramic clays. At the outcrop scale, texturally similar argillaceous or clayey layers of different ceramic types cannot be effectively distinguished, which can result in the misuse and loss of raw materials. Representative samples of clayey raw materials from central Portugal Cenozoic deposits with potential use in the manufacture of structural clay products were first assessed for granulometric, mineralogical, chemical, and technological properties. Based on those properties and the use of multivariate statistical techniques, i.e., factor analysis (FA) and cluster analysis (CA), a novel statistical approach that combined all these variable properties was produced. This approach made it possible to distinguish the ceramic suitability and perceive which parameters most influence that suitability. The use of R-mode FA made it feasible to differentiate and group samples based on the most influential variables: the contents of Al2O3, Fe, illite, quartz, feldspars, and K2O. The use of R-mode CA substantiated the FA results in the identification of influential variables, such as Al2O3, Fe, and illite. The use of Q-mode CA established two main clusters: clayey-silt samples and sandy and/or feldspathic samples, the clayey-silt samples encompassed three sub-clusters. These three sub-clusters match ceramic types with different suitabilities and relate sample stratigraphic setting to the encompassing stratigraphic units. Diagrams that relate the grain size, the content of different oxides, the content of different minerals, and the plasticity to the ceramic suitability illustrate the CA groupings. An adequate blend of sand and clay for red stoneware (bricks and tiles) manufacture was indicated as a major requirement for most raw materials of the clayey-silt cluster. Raw materials represented by the sandy and/or feldspathic cluster can either be used to blend with materials that lack sand or to blend with excessively plastic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agha, M., Ferrell, R.E., and Hart, G.F. (2012) Mineralogy of Egyptian bentonitic clays I: discriminant function analysis. Clays and Clay Minerals, 60, 387–404.

    Article  Google Scholar 

  • ASTM C 326-82 (1997) Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM C 371-09 (2014) Standard Test Method for Wire-cloth Sieve Analysis of Nonplastic Ceramic Powders. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM C 373-88 (1999) Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM C 674-89 (1999) Standard Test Methods for Flexural Properties of Ceramic Whiteware Material. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM C 689-93 (1997) Standard Test Method for Modulus of Rupture of Unfired Clays. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM D 4318-10 (2010) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • ASTM D 4972-13 (2013) Standard Test Method for pH of Soils. American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania, USA.

    Google Scholar 

  • Bain, J.A. and Highley, D.E. (1979) Regional appraisal of clay resources — a challenge to the clay mineralogist. In Proceedings of the 6th International Clay Conference, July 1978. (M.M. Mortland and V.C. Farmer, editors). Developments in Sedimentology, 27, 437–446.

    Article  Google Scholar 

  • Blazek, A. (1972) Thermal Analysis. Van Nostrand Reinhold Company, London.

    Google Scholar 

  • Braekmans, D., Degryse, P., Poblome, J., Neyta, B., Vyncke, K., and Waelkens, M. (2011) Understanding ceramic variability: an archaeometrical interpretation of the Classical and Hellenistic ceramics at Dúzen Tepe and Sagalassos (Southwest Turkey). Journal of Archaeological Science, 38, 2101–2115.

    Article  Google Scholar 

  • Brindley, G.W. and Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-ray Identification. Monograph 5, Mineralogical Society, London.

    Book  Google Scholar 

  • Bruguera, J. (1985) Manual Práctico de Cerámica. Omega, DL, XVI, Barcelona.

    Google Scholar 

  • Bundy, W.M., Johns, W.D., and Murray, H.H. (1966) Interrelationships of physical and chemical properties of kaolinites. Clays and Clay Minerals, 14, 331–346.

    Article  Google Scholar 

  • Caputo, H.P. (1998) Mecânica dos Solos e Suas Aplicações. Vol.1 and 2, 6th ed. Livros Técnicos e Científicos, Editora S.A., Rio de Janeiro.

  • Castaing, P. (1973) Remarques sur l’utilisation de l’analyse factorielle en sedimentologie. Bulletin de l’Institut de Géologie du Bassin d’Aquitaine, 13, 53–85.

    Google Scholar 

  • Cattell, R.B. (1966) The scree-test for the number of factors. Multivariate Behaviour Research, 1, 245–276.

    Article  Google Scholar 

  • Child, D. (1970) The Essentials of Factor Analysis. Holt, Rinehart and Winston, London.

    Google Scholar 

  • CIE (1978) CIE, Recommendations on Uniform Color Space, Color-difference Equations and Psychometric Color Terms. Supplement 2 to CIE Publication 15, Commission Internationale de l’Eclairage, Paris.

    Google Scholar 

  • Cravero, F., Marfil, S.A., and Maiza, P.J. (2010) Statistical analysis of geochemical data: a tool for discriminating between kaolin deposits of hypogene and supergene origin, Patagonia, Argentina. Clay Minerals, 45, 183–196.

    Article  Google Scholar 

  • Cunha, P.R.P. (1992) Estratigrafia e Sedimentologia dos Depósitos do Cretácico Superior e Terciário de Portugal Central, a leste de Coimbra. PhD thesis, Univ. Coimbra, Coimbra, Portugal, 263 pp.

    Google Scholar 

  • Cunha, P.R.P. (1999) Unidades litostratigráficas do Terciário na região de Miranda do Corvo-Viseu (Bacia do Mondego, Portugal). Comunicações do Instituto Geológico e Mineiro, 86, 143–196.

    Google Scholar 

  • Cunha, P.R.P. (2000) Litostratigrafia do Terciário da região de Miranda do Corvo — Viseu (Bacia do Mondego, Portugal). I Congresso sobre o Cenozóico de Portugal. Faculdade de Ciências e Tecnologia, (UNL), Monte da Caparica, 1–4 March, 107–122.

    Google Scholar 

  • Cunha, P.R.P. and Reis, R.B.P. (1991) Proposta de definiçãa formal de unidades litostratigraáficas no registo arcósico, paleogénico e miocénico, do bordo NE da Bacia Lusitaniana — região a NE de Coimbra. 3° Congresso Nacional de Geologia (Resumos), Coimbra.

    Google Scholar 

  • Davis, J.C. (1986) Statistics and Data Analysis in Geology. Wiley, New York.

    Google Scholar 

  • Decleer, J., Ottenburgs, R., Vandenberghe, N., and Viaene, W. (1981) Geological and physico-chemical characterization of Belgian non-refractory clay deposits and its implications for industrial use. Pp. 699–709 in: Proceedings of the International Clay Conference (H. Van Olphen and F. Veniale, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Dondi, M. (1999) Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15, 337–366.

    Google Scholar 

  • Everitt, B. (1977) Cluster Analysis, Heinemann Educational Books, Ltd., London.

    Google Scholar 

  • Fabbri, B. and Dondi, M. (1995) Caratteristiche e Difetti del Laterizio. Gruppo Editoriale Faenza Editrice, Faenza.

    Google Scholar 

  • Fabbri, B. and Fiori, C. (1985) Clays and complementary raw materials for stoneware tiles. Mineralogica et Petrographica Acta, 29A, 535–545.

    Google Scholar 

  • Fiori, C., Fabbri, B., Donati, F., and Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4, 461–473.

    Article  Google Scholar 

  • Galan, E., Aparicio, P., Gonzalez, I., and Miras, A. (1998) Contribution of multivariate analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition. Clay Minerals, 33, 65–75.

    Article  Google Scholar 

  • Galhano C., Rocha, F., and Gomes, C. (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal). Clay Minerals, 34, 109–116.

    Article  Google Scholar 

  • Gorsuch, R.L. (1974) Factor Analysis. W.B. Saunders Company, Philadelphia.

    Google Scholar 

  • Gorsuch, R.L. (1983) Factor Analysis. Lawrence Erlbaum Associates, Hillside, New Jersey.

    Google Scholar 

  • Jouenne, C.A. (1975) Traité de Céramiques et Matériaux Mineraux. Editions Septima, Paris.

    Google Scholar 

  • Kaiser, H.F. (1958) The varimax criteria for analytical rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • Kowalkowski, T., Zbytniewski, R., Szpejna, J., and Buszewski, B. (2006) Application chemometrics in river water classification. Water Research, 40, 744–752.

    Article  Google Scholar 

  • Kramar, S., Lux J., Mladenović, A., Pristacz, H., Mirtic., B., Sagadin, M., and Rogan-Ćmuc, N. (2012) Mineralogical and geochemical characteristics of Roman pottery from an archaeological site near Mos.nje (Slovenia). Applied Clay Science, 57, 39–48.

    Article  Google Scholar 

  • Kumru, M.N. and Bakaç, M. (2003) R-mode factor analysis applied to the distribution of elements in soils from the Ayd.n basin, Turkey. Journal of Geochemical Exploration, 77, 81–91.

    Article  Google Scholar 

  • Lisboa, J.V. (2009) Matérias-primas da Plataforma do Mondego para Cerâmica. PhD thesis, Univ. Aveiro, Aveiro, Portugal, 247 pp.

    Google Scholar 

  • Lisboa, J.V. (2014) Argilas comuns em Portugal Continental: ocorrência e caraterísticas. Pp. 135–164 in: Proveniência de Materiais Geológicos: Abordagens Sobre o Quaternário de Portugal (P. Dinis, A. Gomes, and S. Monteiro-Rodrigues, editors). APEQ, Coimbra, Portugal.

    Google Scholar 

  • Lisboa, J.V., Carvalho, J., Cunha, P.R.P., and Oliveira, A. (2013) Typological classification of clayey raw materials for ceramics manufacture, in the Tábua region (central Portugal). Bulletin of Engineering Geology and the Environment, 72, 225–232.

    Article  Google Scholar 

  • Lisboa, J.V., Oliveira, D.P.S., Rocha, F., Oliveira, A., and Carvalho, J. (2015) Patterns of rare earth and other trace elements in Paleogene and Miocene clayey sediments from the Mondego platform (Central Portugal). Chemie der Erde, 75, 389–401.

    Article  Google Scholar 

  • Mackenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Mineralogical Society, London.

    Google Scholar 

  • Mackenzie, R.C. (1962) Differential Thermal Analysis Data Index (with mineral, inorganic and organic sections). Cleaver-Hume Press, London.

    Google Scholar 

  • Maritan, L., Holakooei, P., and Mazzoli, C. (2015) Cluster analysis of XRPD data in ancient ceramics: What for? Applied Clay Science, 114, 540–549.

    Article  Google Scholar 

  • Marques, R., Dias, M.I., Prudêncio, M.I., and Rocha, F. (2011) Upper Cretaceous clayey levels from western Portugal (Aveiro and Taveiro regions): clay mineral and traceelements distribution. Clays and Clay Minerals, 59, 315–327.

    Article  Google Scholar 

  • Martins, R.V.S. (2007) Investigaçãa Científica e Tecnológica de Matérias-primas Minerais de Santiago do Cacém (Alentejo) e das suas Potencialidades para a Indústria Cerâmica. PhD thesis, Univ. Aveiro, Aveiro, Portugal, 457 pp.

    Google Scholar 

  • Mazzoleni, P. and Summa, V. (1996) Compositional characteristics of Plio-Pleistocene clays from Tricarico (Potenza, Southern Italy) and their utilization by the Italian tile industry. Applied Clay Science, 11, 251–268.

    Article  Google Scholar 

  • Montana, G., Ontiveros, M.A.C., Polito, A.M., and Azzaro, E. (2011) Characterisation of clayey raw materials for ceramic manufacture in ancient Sicily. Applied Clay Science, 53, 476–488.

    Article  Google Scholar 

  • Oliveira, J.M.S., Moura, A.C., and Grade, J. (1980) Argilas especiais da região de Barracão-Pombal: aplicação da análise matemática multivariada ao seu estudo e caracterização. Comunicações dos Serviços Geolñgicos de Portugal, 66, 195–208.

    Google Scholar 

  • Pais, J., Cunha, P.P., Pereira, D.I., Legoinha, P., Kullberg, J.C., Dias, R., Brum, S.A., and Moura, D. (2012) The Paleogene and Neogene of Western Iberia (Portugal). Springer, Berlin, Heidelberg, ISBN: {rs978-3-642-22400-3 DOI }.

    Book  Google Scholar 

  • Pais J., Cunha P.P., Legoinha P., Dias R.P., Pereira D.I., and Ramos A. (2013) Cenozóico das Bacias do Douro (sector ocidental), Mondego, Baixo Tejo e Alvalade. Pp. 461–532 in: Geologia de Portugal: Vol. II — Geologia Mesocenozóica de Portugal (R. Dias, A. Araújo, P. Terrinha, and J.C. Kullberg, editors). Escolar Editora, Lisbon.

    Google Scholar 

  • Papatheodorou, G., Demopouloua, G., and Lambrakis, N. (2006) A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecological Modelling, 193, 759–776.

    Article  Google Scholar 

  • Reimann, C. and Filzmoser, P. (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.

    Google Scholar 

  • Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation and Interpretation. Longman Scientific and Technical. Wiley, New York.

    Google Scholar 

  • Santos, P.S. (1975) Tecnologia de Argilas. Vol. 1-Fundamentos and Vol. 2-Aplicações (E. Blucher, editor), University of São Paulo, São Paulo, Brazil.

  • Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper, 391-C, 1–31.

    Google Scholar 

  • Sequeira, A.D., Cunha, P.P., and Sousa, M.B. (1997) A reactivação de falhas no intenso contexto compressivo desde meados do Tortoniano, na região de Espinhal-Coja-Caramulo (Portugal Central). Comunicaçõs do Instituto Geológico e Mineiro, 83, 95–126.

    Google Scholar 

  • Singer, F. and Singer, S. (1963) Industrial Ceramics, vol. 1 and 2, Chapman & Hall, Ltd., London.

    Book  Google Scholar 

  • Singh, K.P., Malik, A., Mohan, D., and Sinha, S. (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Research, 38, 3980–3992.

    Article  Google Scholar 

  • Shepard, F.P. (1954) Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24, 151–158.

    Article  Google Scholar 

  • Soares, A.F., Marques, J.F., and Sequeira, A.D. (2007) Notícia Explicativa da Folha 19-D — Lousã. Geology Department, INETI, Lisbon.

    Google Scholar 

  • Statsoft (2001) STATISTICA System Reference. Statsoft, Inc., 2300 East 14th Street, Tulsa, OK 74104 USA.

    Google Scholar 

  • Stevens, J. (1986) Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA.

    Google Scholar 

  • Strazzera, B., Dondi, M., and Marsigli, M. (1997) Composition and ceramic properties of Tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247–266.

    Article  Google Scholar 

  • Thorez, J. (1976) Practical Identification of Clay Minerals. Editions G. Lelotte, Belgium.

    Google Scholar 

  • Ward, J.H. (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Winkler, H.G.F. (1954) Bedeutung der korngróbenverteilung und des mineralbestandes von tonen fiir die herstellung grobkeramischer erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337–343.

    Google Scholar 

  • Zhu, J., Shan, J., Qiu, P., Qin, Y., Wang, C., He, D., Sun, B., Tong, P., and Wu, S. (2004) The multivariate statistical analysis and XRD analysis of pottery at Xigongqiao site. Journal of Archaeological Science, 31, 1685–1691.

    Article  Google Scholar 

  • Zhou, F., Liu, Y., and Guo, H. (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern New Territories, Hong Kong. Environmental Monitoring Assessment, 132, 1–13.

    Article  Google Scholar 

  • Zhou, J., Ma, D., Pan, J., Nie, W., and Wu, K. (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environmental Geology, 54, 373–380.

    Article  Google Scholar 

  • Zorski, T., Ossowski, A., Środoń, J., and Kawiak, T. (2011) Evaluation of mineral composition and petrophysical parameters by the integration of core analysis data and wireline well log data: the Carpathian Foredeep case study. Clay Minerals, 46, 25–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Lisboa.

Additional information

This paper is published as part of a special section on the subject of ‘Developments and applications of quantitative analysis to clay-bearing materials, incorporating The Reynolds Cup School’, arising out of presentations made during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisboa, J.V., Rocha, F. & de Oliveira, D.P.S. Application of Multivariate Analysis in the Assessment of Ceramic Raw Materials. Clays Clay Miner. 64, 767–787 (2016). https://doi.org/10.1346/CCMN.2016.064040

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.064040

Key Words

Navigation