Ion Adsorption at Clay-Mineral Surfaces: The Hofmeister Series for Hydrated Smectite Minerals

Abstract

Many important properties of clay minerals are defined by the species of charge-balancing cation. Phenomena such as clay swelling and cation exchange depend on the cation species present, and understanding how the cations bind with the mineral surface at a fundamental level is important. In the present study the binding affinities of several different charge-balancing cations with the basal surface of the smectite mineral, montmorillonite, have been calculated using molecular dynamics in conjunction with the well-tempered metadynamics algorithm. The results follow a Hofmeister series of preferred ion adsorption to the smectite basal surfaces of the form: K+ > Na+ > Ca2+ > Cs+ > Ba2+

The results also revealed the energetically favorable position of the ions above the clay basal surfaces. Key features of the free-energy profiles are illustrated by Boltzmann population inversions and analyses of the water structures surrounding the ion and clay surface. The results show that weakly hydrated cations (K+ and Cs+) preferentially form inner-sphere surface complexes (ISSC) above the ditrigonal siloxane cavities of the clay, while the more strongly hydrated cations (Na+) are able to form ISSCs above the basal O atoms of the clay surface. The strongly hydrated cations (Na+, Ca2+, and Ba2+), however, preferentially form outer-sphere surface complexes. The results provide insight into the adsorption mechanisms of several ionic species on montmorillonite and are relevant to many phenomena thought to be affected by cation exchange, such as nuclear waste disposal, herbicide/pesticide-soil interactions, and enhanced oil recovery.

This is a preview of subscription content, log in to check access.

References

  1. Aaqvist, J. (1990) Ion-water interaction potentials derived from free energy perturbation simulations. The Journal of Phyical Chemistry, 94, 8021–8024.

    Article  Google Scholar 

  2. Barducci, A., Bussi, B., and Parrinello M. (2008) Well-tempered metadynamics: A smoothly converging and tunable free energy method. Physical Review Letters, 100, 020603.

    Article  Google Scholar 

  3. Benson, L.V. (1982) A tabulation and evaluation of ion exchange data on smectites. Environmental Geology, 4, 23–29.

    Article  Google Scholar 

  4. Berendsen, H.J.C, Grigera, J.R., and Straatsma, T.P. (1987) The missing term in effective pair potentials. The Journal of Physical Chemistry, 91, 6269–6271.

    Article  Google Scholar 

  5. Bergaya, F., Theng, B., and Lagaly, G., editors (2006) Handbook of Clay Science. Elsevier Science, Amsterdam.

    Google Scholar 

  6. Boek, E.S. and Sprik, M. (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. The Journal of Physical Chemistry B, 107, 3251–3256.

    Article  Google Scholar 

  7. Boek, E.S., Coveney, P.V., and Skipper, N.T. (1995) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: Understanding the role of potassium as a clay swelling inhibitor. The Journal of the American Chemical Society, 117, 12608–12617.

    Article  Google Scholar 

  8. Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R.A., and Parrinello, M. (2009) PLUMED: A portable plugin for free energy calculations with molecular dynamics. Computer Physics Communications, 180, 1961–1972.

    Article  Google Scholar 

  9. Bourg, I.C. and Sposito, G. (2011) Ion Exchange Phenomena; Handbook of Soil Science, Properties and Processes (2nd edition). CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  10. Bowers, G.M., Bish, D.L., and Kirkpatrick, R.J. (2008) H2O and cation structure and dynamics in expandable clays: 2H and 39K NMR investigations of hectorite. The Journal of Physical Chemistry C, 112, 6430–6438.

    Article  Google Scholar 

  11. Brown, D.R. and Kevan, L. (1988) Aqueous coordination and location of exchangeable copper (2+) cations in montmorillonite clay studied by electron spin resonance and electron spin echo modulation. Journal of the American Chemical Society, 110, 2743–2748.

    Article  Google Scholar 

  12. Chang, F.R.C., Skipper, N.T., and Sposito, G. (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir, 11, 2734–2741.

    Article  Google Scholar 

  13. Chen, C.C. and Hayes, K.F. (1999) X-ray absorption spectroscopy investigation of aqueous Co(II) and Sr (II) sorption at clay-water interfaces. Geochimica et Cosmochimica Acta, 63, 3205–3215.

    Article  Google Scholar 

  14. Coveney, P.V. and Wan, S. (2016) On the calculation of equilibrium thermodynamic properties from molecular dynamics. Physical Chemistry Chemical Physics, DOI: https://doi.org/10.1039/C6CP02349E.

    Google Scholar 

  15. Cygan, R.T., Liang, J.J., and Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Phyical Chemistry B, 108, 1255–1266.

    Article  Google Scholar 

  16. Downs, R.T. and Hall-Wallace, M. (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247–250.

    Article  Google Scholar 

  17. Eisenman, G. (1962) Cation selective glass electrodes and their mode of operation. Biophysical Journal, 2, 259–323.

    Article  Google Scholar 

  18. Gast, R.G. (1969) Standard free energies of exchange for alkali metal cations on Wyoming bentonite. Soil Science Society of America Journal, 33, 37–41.

    Article  Google Scholar 

  19. Gast, R.G. (1972) Alkali metal cation exchange on Chambers montmorillonite. Soil Science Society of America Journal, 36, 14–19.

    Article  Google Scholar 

  20. Greathouse, J.A., Refson, K., and Sposito, G. (2000) Molecular dynamics simulation of water mobility in magnesium-smectite hydrates. Journal of the American Chemical Society, 122, 11459–11464.

    Article  Google Scholar 

  21. Greathouse, J.A., Hart, D.B., Bowers, G.M., Kirkpatrick, R.J., and Cygan, R.T. (2015) Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores. The Journal of Physical Chemistry C, 119, 17126–17136.

    Article  Google Scholar 

  22. Greenwell, H.C., Jones, W., Coveney, P.V., and Stackhouse, S. (2006) On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective. Journal of Materials Chemistry, 16, 708–723.

    Article  Google Scholar 

  23. Hanshaw, B.B. (1964) Cation-exchange constants for clays from electrochemical measurements. 12th Annual Meeting of the Clay Minerals Society, USA.

    Google Scholar 

  24. Heinz, H., Lin, T.-J., Mishra, R.K., and Emami, F.S. (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29, 1754–1765.

    Article  Google Scholar 

  25. Hunter, J.D. (2007) Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9, 90–95.

    Article  Google Scholar 

  26. Koneshan, S., Lynden-Bell, R.M., and Rasaiah, J.C. (1998) Friction coefficients of ions in aqueous solution at 25°C. The Journal of the American Chemical Society, 120, 12041–12050.

    Article  Google Scholar 

  27. Marry, V. and Turq, P. (2003) Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites. The Journal of Physical Chemistry B, 107, 1832–1839.

    Article  Google Scholar 

  28. Marry, V., Dubois, E., Malikova, N., Breu, J., and Haussler, W. (2013) Anisotropy of water dynamics in clays: insights from molecular simulations for experimental QENS analysis. The Journal of Physical Chemistry C, 117, 15106–15115

    Article  Google Scholar 

  29. Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., and Beckstein, O. (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32, 2319–2327.

    Article  Google Scholar 

  30. Nakano, M., Kawamura, K., and Ichikawa, Y. (2003) Local structural information of Cs in smectite hydrates by means of an EXAFS study and molecular dynamics simulations. Applied Clay Science, 23, 15–23.

    Article  Google Scholar 

  31. Ngouana W., B.F. and Kalinichev, A.G. (2014) Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models. The Journal of Physical Chemistry C, 118, 12758–12773.

    Article  Google Scholar 

  32. Papelis, C. and Hayes, K.F. (1996) Distinguishing between interlayer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 89–96.

    Article  Google Scholar 

  33. Park, S.H. and Sposito, G. (2002) Structure of water adsorbed on a mica surface. Physical Review Letters, 89, 085501.

    Article  Google Scholar 

  34. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., and Hess, B. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854.

    Article  Google Scholar 

  35. Rotenberg, B., Marry, V., Vuilleumier, R., Malikova, N., Simon, C., and Turq, P. (2007) Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics. Geochimica et Cosmochimica Acta, 71, 5089–5101.

    Article  Google Scholar 

  36. Rotenberg, B., Morel, J.-P., Marry, V., Turq, P., and Morel-Desrosiers, N. (2009) On the driving force of cation exchange in clays: Insights from combined microcalorimetry experiments and molecular simulation. Geochimica et Cosmochimica Acta, 73, 4034–4044.

    Article  Google Scholar 

  37. Rotenberg, B., Marry, V., Malikova, N., and Turq, P. (2010) Molecular simulation of aqueous solutions at clay surfaces. Journal of Physics: Condensed Matter, 22, 284114.

    Google Scholar 

  38. Shroll, R.M. and Smith, D.E. (1999) Molecular dynamics simulations in the grand canonical ensemble: Application to clay mineral swelling. The Journal of Chemical Physics, 111, 9025–9033.

    Article  Google Scholar 

  39. Smith, D.E. and Dang, L.X. (1994a) Computer simulations of cesium-water clusters: Do ion-water clusters form gas-phase clathrates? The Journal of Chemical Physics, 101, 7873.

    Article  Google Scholar 

  40. Smith, D.E. and Dang, L.X. (1994b) Computer simulations of NaCl association in polarizable water. The Journal of Chemical Physics, 100, 3757.

    Article  Google Scholar 

  41. Strawn, D.G. and Sparks, D.L. (1999) The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science, 216, 257–269.

    Article  Google Scholar 

  42. Suter, J.L., Anderson, R.L., Greenwell, H.C., and Coveney, P.V. (2009) Recent advances in large-scale atomistic and coarse-grained molecular dynamics simulation of clay minerals. Journal of Materials Chemistry, 19, 2482–2493.

    Article  Google Scholar 

  43. Swenson, J., Bergman, R., and Howells, W.S. (2000) Quasielastic neutron scattering of two-dimensional water in a vermiculite clay. The Journal of Chemical Physics, 113, 2873–2879.

    Article  Google Scholar 

  44. Teppen, B.J. and Miller, D.M. (2006) Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70, 31–40.

    Article  Google Scholar 

  45. Tesson, S., Salanne, M., Rotenberg, B., Tazi, S., and Marry, V. (2016) Classical polarizable force field for clays: Pyrophyllite and talc. The Journal of Physical Chemistry C, 120, 3749–3758.

    Article  Google Scholar 

  46. Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G. (2014) PLUMED 2: New feathers for an old bird. Computer Physics Communications, 185, 604–613.

    Article  Google Scholar 

  47. Underwood, T., Erastova, V., Cubillas, P., and Greenwell, H.C. (2015) Molecular dynamic simulations of montmorillonite—organic interactions under varying salinity: An insight into enhanced oil recovery. The Journal of Physical Chemistry C, 119, 7282–7294.

    Article  Google Scholar 

  48. Viani, A., Gualtieri, A.F., and Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966–975.

    Article  Google Scholar 

  49. William Humphrey, A.D. (1996) VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  Google Scholar 

  50. Zhang, P.C., Brady, P.V., Arthur, S.E., Zhou, W.Q., Sawyer, D., and Hesterberg, D.A. (2001) Adsorption of barium (II) on montmorillonite: an EXAFS study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190, 239–249.

    Article  Google Scholar 

  51. Zhang, Y. and Cremer, P.S. (2006) Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology, 10, 658–663.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Thomas Underwood or H. Chris Greenwell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Underwood, T., Erastova, V. & Greenwell, H.C. Ion Adsorption at Clay-Mineral Surfaces: The Hofmeister Series for Hydrated Smectite Minerals. Clays Clay Miner. 64, 472–487 (2016). https://doi.org/10.1346/CCMN.2016.0640310

Download citation

Key Words

  • Binding Affinity
  • Cation Exchange
  • Molecular Dynamics
  • Montmorillonite
  • Well-tempered Metadynamics