Skip to main content
Log in

Mineralogical Evolution of Di- and Trioctahedral Smectites in Highly Alkaline Environments

  • Published:
Clays and Clay Minerals

Abstract

The mineralogical evolution of di- and trioctahedral smectites (i.e. montmorillonite and saponite) exposed to high-pH environments has been studied to determine the influence of compositional differences on clay dissolution and the formation of new phases. The present study helps to gauge the effects of highly alkaline solutions on the swelling capacity of smectitic clays and experimental results are extrapolated to predict the behavior of smectite-rich soils in various technical applications such as nuclearwaste storage and architectural conservation. The present study revealed extensive dissolution of montmorillonite in 5 M NaOH or 5 M KOH solutions and the neoformation of various zeolites, thereby reducing the clay’s swelling capacity significantly. Saponite, in contrast, experienced less pronounced changes, including transformation into a randomly interstratified saponite-chlorite and a Si-rich amorphous phase. These changes only provoked a partial reduction in swelling capacity. The results imply that under repository conditions (e.g. alkaline environment caused by hyperalkaline fluids released during concrete leaching), the slow and limited transformation of saponite into corrensite-type minerals would be beneficial for preserving the clay’s swelling capacity and, therefore, its effectiveness as a sealing material. Conversely, the loss of swelling capacity as a result of zeolite formation in montmorillonite observed in the present experiments would limit the clay’s effectiveness as a sealing material in waste repositories. In the case of earthen architecture conservation, alkaline consolidation treatments aimed at reducing the soils’ swelling capacity and, thereby, improving water resistance, would only be effective for treating earthen structures made of soils rich in dioctahedral smectites. Soils containing trioctahedral smectites, in contrast, are not likely to improve their water resistance because the swelling capacity will only be partially reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrer, R.M. (1982) Hydrothermal Chemistry of Zeolites, Academic Press, London, 360 pp.

    Google Scholar 

  • Barrer, R.M., Cole, J.F., and Sticher, H. (1968) Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society (A), 2475–2485.

    Google Scholar 

  • Barth-Wirsching, U. and Höller, H. (1989) Experimental studies on zeolite formation conditions. European Journal of Mineralogy, 1, 489–509.

    Article  Google Scholar 

  • Bauer, A. and Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, 34, 259–273.

    Article  Google Scholar 

  • Bauer, A., Velde, B., and Berger, G. (1998) Kaolinite transformation in high molar KOH solutions. Applied Geochemistry, 13, 619–629.

    Article  Google Scholar 

  • Beaufort, D. and Meunier, A. (1994) Saponite, corrensite and chlorite-saponite mixed-layers in Sancerre-Couy deep drillhole (France). Clay Minerals, 29, 47–61.

    Article  Google Scholar 

  • Beaufort, D., Baronnet, A., Lanson, B., and Meunier, A. (1997) Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109–124.

    Article  Google Scholar 

  • Becerro, A., Mantovani, M., and Escudero, A. (2009) Mineralogical stability of phyllosilicates in hyperalkaline fluids: Influence of layer nature, octahedral occupation and presence of tetrahedral Al. American Mineralogist, 94, 1187–1197.

    Article  Google Scholar 

  • Brady, P.V. and Walther, J.V. (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C. Geochimica et Cosmochimica Acta, 53, 2823–2830.

    Article  Google Scholar 

  • Breck, D.W. (1974) Zeolite Molecular Sieves — Structure, Chemistry and Use. John Wiley & Sons, Inc., New York, 771 pp.

    Google Scholar 

  • Brigatti, M.F. and Poppi, L. (1984) Crystal chemistry of corrensite: A review. Clays and Clay Minerals, 32, 391–399.

    Article  Google Scholar 

  • Bristow, T.F., Kennedy, M.J., Derkowski, A., Droser, M.L., Jiang, G., and Creaser, R.A. (2009) Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences USA, 106, 13190–13195.

    Article  Google Scholar 

  • Brunauer, S., Emmett, P.H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Csicsery, S.M. (1984) Shape-selective catalysis in zeolites. Zeolites, 4, 202–312.

    Article  Google Scholar 

  • Cuadros, J. (2008) Clay as sealing material in nuclear waste repositories. Geology Today, 24, 99–103.

    Article  Google Scholar 

  • Cuevas Rodriguez, J. (1993) Comportamiento hidrotermal de las arcillas saponiticas de la cuenca de Madrid. Estudios Geológicos, 49, 137–146.

    Article  Google Scholar 

  • Cuevas, J., Pelayo, M., Rivas, P., and Leguey, S. (1993) Characterization of Mg-clays from the Neogene of the Madrid Basin and their potential as backfill and sealing material in high level radioactive waste disposal. Applied Clay Science, 7, 383–406.

    Article  Google Scholar 

  • Cuevas, J., Garralon, A., Ramirez, S., and Leguey, S. (2001) Hydrothermal alteration of a saponitic bentonite: Mineral reactivity and evolution of surface properties. Clay Minerals, 36, 61–74.

    Article  Google Scholar 

  • Davis, M.E. and Lobo, R.F. (1992) Zeolite and molecular sieve synthesis. Chemistry of Materials, 4, 756–768.

    Article  Google Scholar 

  • Doehne, E. and Price, C.A. (2010) Stone Conservation — An overview of current research. The Getty Conservation Institute, Los Angeles, USA, 158 pp.

    Google Scholar 

  • Drief, A., Nieto, F., and Sanchez-Navas, A. (2001) Experimental clay-mineral formation from a subvolcanic rock by interaction with 1 M NaOH solution at room temperature. Clays and Clay Minerals, 49, 92–106.

    Article  Google Scholar 

  • Drief, A., Martinez-Ruiz, F., Nieto, F., and Velilla Sanchez, N. (2002) Transmission Electron Microscopy evidence for experimental illitization of smectite in K-enriched seawater solution at 50°C and basic pH. Clays and Clay Minerals, 50, 746–756.

    Article  Google Scholar 

  • Eberl, D.D., Velde, B., and McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperature and high pH. Clay Minerals, 28, 49–60.

    Article  Google Scholar 

  • Elert, K., Sebastian Pardo, E., and Rodriguez-Navarro, C. (2015) Alkaline treatment as an alternative method for the consolidation of earthen architecture. Journal of Cultural Heritage, 16, 461–469.

    Article  Google Scholar 

  • Felsche, J., Luger, S., and Baerlocher, Ch. (1986) Crystal structures of the hydro-sodalite Na6[ALSiO4]6·8H2O and of the anhydrous sodalite Na6[ALSiO4]6. Zeolites, 6, 367–372.

    Article  Google Scholar 

  • Fernandez, R., Ruiz, A.I., and Cuevas, J. (2014) The role of smectite composition on the hyperalkaline alteration of bentonite. Applied Clay Science, 95, 83–94.

    Article  Google Scholar 

  • Gaucher, E.C. and Blanc, P. (2006) Cement/clay interactions — a review: Experiments, natural analogues, and modeling. Waste Management, 26, 776–788.

    Article  Google Scholar 

  • Gottardi, G. (1989) The genesis of zeolites. European Journal of Mineralogy, 1, 479–487.

    Article  Google Scholar 

  • Groen, J.C., Pfeffer, L.A.A., and Perez-Ramirez, J. (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 60, 1–17.

    Article  Google Scholar 

  • Hauff, P. (1981) Corrensite: Mineralogical Ambiguities and Geologic Significance. Geological Survey, Open-File Report 81-850, US Department of the Interior, 45 pp.

  • Hensen, E.J.M. and Smit, B. (2002) Why clays swell. Journal of Physical Chemistry B, 106, 12664–12667.

    Article  Google Scholar 

  • Huertas, F.J., Carretero, P., Delgado, J., Linares, J., and Samper, J. (2001) An experimental study on the ionexchange behaviour of the smectite of Cabo de Gata (Almeria, Spain): FEBEX bentonite. Journal of Colloid and Interface Science, 239, 409–416.

    Article  Google Scholar 

  • Karamalidis, A.K. and Dzombak, D.A. (2010) Surface Complexation Modeling: Gibbsite. John Wiley & Sons, Inc., New Jersey, 294 pp.

    Book  Google Scholar 

  • Karnland, O., Olsson, S., Nilsson, U., and Sellin, P. (2007) Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions. Physics and Chemistry of the Earth, 32, 275–286.

    Article  Google Scholar 

  • Kirov, G. and Filizova, L. (2012) Cationic hydration impact on zeolite formation and properties: A review and discussion. Geochemistry, Mineralogy and Petrology — Sofia, 49, 65–82.

    Google Scholar 

  • Kovalchuk, G., Fernandez-Jimenez, A., and Palomo, A. (2008) Activacion alcalina de cenizas volantes. Relación entre el desarrollo mecánico resistente y la composición química de la ceniza. Materiales de Construcción, 58, 35–52.

    Google Scholar 

  • Li, D., Yao, J., Wang, H., Hao, N., Zhao, D., Ratinac, K.R., and Ringer, S.P. (2007) Organic-functionalized sodalite nanocrystals and their dispersion in solvents. Microporous and Mesoporous Materials, 106, 262–267.

    Article  Google Scholar 

  • Lorimer, G.W. and Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506–519 in: Electron Microscopy in Mineralogy (H.R. Wenk, editor). Springer-Verlag, New York.

    Google Scholar 

  • Meunier, A., Velde, B., and Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Minerals, 33, 187–196.

    Article  Google Scholar 

  • Miyaji, F., Murakami, T., and Suyama, Y. (2009) Formation of linde F by KOH treatment of coal fly ash. Journal of the Ceramic Society of Japan, 117, 619–622.

    Article  Google Scholar 

  • Moliner, M. (2012) Direct synthesis of functional zeolitic materials. International Scholarly Research Network Materials Science, 24 pp.

  • Mosser-Ruck, R. and Chathelineau, M. (2004) Experimental transformation of Na,Ca-smectite under basic conditions at 150°C. Applied Clay Science, 26, 259–273.

    Article  Google Scholar 

  • Mumpton, F.A. (1985) Using zeolites in agriculture. Pp. 127–157 in: Innovative Biological Technologies for Lesser Developed Countries. Congress of the US, Office of Technology Assessment, Washington D.C.

    Google Scholar 

  • Murakami, T., Sato, T., and Inoue, A. (1999) HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. American Mineralogist, 84, 1080–1087.

    Article  Google Scholar 

  • Nagy, K.L. (1995) Dissolution and precipitation kinetics of sheet silicates. Pp. 173–225 in: Chemical Weathering Rates of Silicate Minerals (A.F. White and S.L. Brantley, editors). Reviews in Mineralogy, 31, Mineralogical Society of America, Washington D.C.

    Google Scholar 

  • Newman, A.C.D. and Brown, G. (1987) The chemical constitution of clay. Pp. 1–128 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Mineralogical Society Monograph, 6, Longman Scientific & Technical, London.

    Google Scholar 

  • Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.

    Article  Google Scholar 

  • Pokrovsky, O.S. and Schott, J. (2004) Experimental study of brucite dissolution and precipitation in aqueous solution: Surface speciation and chemical affinity control. Geochimica et Cosmochimica Acta, 68, 31–45.

    Article  Google Scholar 

  • Pozo Rodríguez, M. and Casas Sainz de Aja, J. (1992) Mineralogía y sedimentología del yacimiento de saponita de Yuncos (Toledo). Estudios Geologicos, 48, 47–65.

    Article  Google Scholar 

  • Prieto, O., Vicente, M.A., and Bañares-Muñoz, A. (1999) Study of the porous solids obtained by acid treatment of a high surface area saponite. Journal of Porous Materials, 6, 335–334.

    Article  Google Scholar 

  • Ramirez, S., Cuevas, J., Vigil, R., and Leguey, S. (2002) Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions. Applied Clay Science, 21, 257–269.

    Article  Google Scholar 

  • Rouquerol, J., Rouquerol, F., and Sing, K.S.W. (1998) Absorption by Powders and Porous Solids. Academic Press, San Diego, 467 pp.

    Google Scholar 

  • Roy, D.M. (1999) Alkali-activated cements. Opportunities and challenges. Cement and Concrete Research, 29, 249–254.

    Article  Google Scholar 

  • Rozalen, M., Brady, P.V., and Huertas, F.J. (2009) Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics. Journal of Colloid and Interface Science, 333, 474–484.

    Article  Google Scholar 

  • Sanchez, L., Cuevas, J., Ramirez, S., Ruiz de Leon, D., Fernandez, R., Vigil dela Villa, R., and Leguey, S. (2006) Reaction kinetics of FEBEX bentonite in hyperalkaline conditions resembling the cement-bentonite interface. Applied Clay Science, 33, 125–141.

    Article  Google Scholar 

  • Siegel, M.D., Leckie, J.O., Park, S.W., Phillips, S.L., and Sewards, T. (1990) Studies of radionuclide sorption by clays in the Culebra dolomite at the Wipp site, southeastern New Mexico. Pp. 839–900 in: Technical Report SAND-89-2387, Sandia National Labs, Albuquerque, NM (USA).

    Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry, 57, 603–619.

    Article  Google Scholar 

  • Singh, R. and Dutta, P.K. (1998) Stabilization of natural faujasite zeolite: possible role of alkaline earth metal ions. Microporous and Mesoporous Materials, 21, 103–109.

    Article  Google Scholar 

  • Slaty, F., Khoury, H., Wastiels, J., and Rahier, H. (2013) Characterization of alkali activated kaolinitic clay. Applied Clay Science, 75–76, 120–125.

    Article  Google Scholar 

  • Somasundaran, P. and Agar, G.E. (1967) The zero point of charge of calcite. Journal of Colloid and Interface Science, 24, 400–433.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press, New York, 234 pp.

    Google Scholar 

  • Stumm, W. (1997) Reactivity at the mineral—water interface: Dissolution and inhibition. Colloids and Surfaces A, 120, 143–166.

    Article  Google Scholar 

  • Suarez Barrios, M., Vicente-Rodriguez, M.A., and Martin Pozas, J.M. (1996) Intercalation compounds between nicotine and a high surface area saponite. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 24, 263–272.

    Article  Google Scholar 

  • Sutarno, S. and Arryanto, Y. (2007) Synthesis of faujasite from fly ash and its application for hydrocracking of petroleum distillates. Bulletin of Chemical Reaction Engineering and Catalysis, 2, 45–51.

    Article  Google Scholar 

  • Villar, M.V., Perez del Villar, L., Martin, P.L., Pelayo, M., Fernandez, A.M., Garralon, A., Cuevas, J., Leguey, S., Caballero, E., Huertas, F.J., Jimenez de Cisneros, C., Linares, J., Reyes, E., Delgado, A., Fernandez-Soler, J.M., and Astudillo, J. (2006) The study of Spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress. Journal of Iberian Geology, 32, 15–36.

    Google Scholar 

  • Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Elert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elert, K., Pardo, E.S. & Rodriguez-Navarro, C. Mineralogical Evolution of Di- and Trioctahedral Smectites in Highly Alkaline Environments. Clays Clay Miner. 63, 414–431 (2015). https://doi.org/10.1346/CCMN.2015.0630601

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630601

Key Words

Navigation