Skip to main content
Log in

Modification of Montmorillonite with Alkyl Silanes and Fluorosurfactant for Clay/fluoroelastomer (FKM) Nanocomposites

  • Published:
Clays and Clay Minerals

Abstract

The main objective of the present work was to functionalize nanoclays with organosilanes and surfactant in order to facilitate the dispersion of the nanofillers in the host fluoroelastomer (FKM) polymer matrix. Better dispersion was achieved by improving interaction between the clay polymer nanocomposite (CPN) constituents. The first part of this study investigated modification of montmorillonite (Mnt) using different saturated and unsaturated alkyl silanes and an alkyl hydrocarbon ammonium quaternary surfactant. Silicon magic angle spinning nuclear magnetic resonance spectroscopy, thermal gravimetric analysis (TGA), elemental analysis, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy were used to characterize the silane-grafted clays. Results indicated that the amount of silane grafted depended on the specific structure of the silane. Silane-grafted Mnt was also modified with ionic surfactants intercalated between the clay layers. A 169% increase in the clay basal spacing (from initial spacing of 10.0 Å to 26.9 Å) was achieved. The second part of the study successfully synthesized FKM nanocomposites containing custom-functionalized Mnt, with the aim of producing reinforced high-performance materials. The effects of clay modification on the morphology and thermal properties of the CPN were studied using XRD, TGA, scanning electron microscopy, and transmission electron microscopy. The CPN made with the modified clay exhibited greater thermal stability than the CPN of the commercially available modified Mnt, with a degradation onset point ~ 40°C higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbehausen, C., Formiga, A.L.B., Sabadini, E., and Yoshid, I.V.P. (2010) A β-cyclodextrin/siloxane hybrid polymer: synthesis, characterization and inclusion complexes. Journal of Brazilian Chemical Society, 21, 1867–1876.

    Article  Google Scholar 

  • Akelah, A. and Moet, A. (1996) Polymer-clay nanocomposites: Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. Journal of Materials Science, 31, 3589–3596.

    Article  Google Scholar 

  • Al-haj Ali, M. and Elleithy, R.H. (2011) Viscoelastic properties of polypropylene/organo-clay nano-composites prepared using miniature lab mixing extruder from masterbatch. Journal of Applied Polymer Science, 121, 27–36.

    Article  Google Scholar 

  • Ameduri, B., Boutevin, B., and Kostov, G. (2001) Fluoroelastomers: synthesis, properties and applications. Progress in Polymer Science, 26, 105–187.

    Article  Google Scholar 

  • Bergaya, F. and Lagaly, G. (2001) Surface modification of clay minerals. Applied Clay Science, 19, 1–3.

    Article  Google Scholar 

  • Bergaya, F., Jaber, M., and Lambert, J.F. (2011) Clays and clay minerals. Pp. 1–44 in: Rubber-Clay Nanocomposites, Science, Technology and Applications (M. Galimberti, editor). Wiley, Hoboken, New Jersey.

    Google Scholar 

  • Bergaya, F., Detellier, C., Lambert, J.-F., and Lagaly, G. (2013) Introduction to clay polymer nanocomposites. Pp. 655–678 in: Handbook of Clay Science, 2nd edition. Developments in Clay Science, Volume 5, Elsevier, Amsterdam.

    Google Scholar 

  • Borse, N.K. and Kamal, M.R. (2006) Melt processing effects on the structure and mechanical properties of PA-6/clay nanocomposites. Polymer Engineering and Science, 46, 1094–1103.

    Article  Google Scholar 

  • Bukka, K. and Miller, J.D. (1992) FTIR study of deuterated montmorillonites: Structural features relevant to pillared clay stability. Clays and Clay Minerals, 40, 92–102.

    Article  Google Scholar 

  • Chen, G.X., Choi, J.B., and Yoon, J.S. (2005) The role of functional group on the exfoliation of clay in poly(L-lactide). Macromolecular Rapid Communication, 26, 183–187

    Article  Google Scholar 

  • Coates, J. (2000) Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, 10815–10837.

    Google Scholar 

  • Daniel, L.M., Frost, R.L., and Zhu, H.Y. (2008) Edge-modification of Laponite with dimethyl-octylmethoxysilane. Journal of Colloid Interface Science, 321, 302–309.

    Article  Google Scholar 

  • Das, A., Stöckelhuber, K.W., Jurk, R., Jehnichen, D., and Heinrich, G. (2011) A general approach to rubber—montmorillonite nanocomposites: Intercalation of stearic acid. Applied Clay Science, 51, 117–125.

    Article  Google Scholar 

  • Dennis, H.R., Hunter, D.L., Chang, D., White, J.L., Cho, J.W., and Paul, D.R. (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer, 42, 9513–9522.

    Article  Google Scholar 

  • Dong, J., Ozaki, Y., and Nakashima, K. (1997) Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules, 30, 1111–1117.

    Article  Google Scholar 

  • El Rassy, H. and Pierre, A.C. (2005) NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. Journal of Non-Crystalline Solids, 351, 1603–1610.

    Article  Google Scholar 

  • He, H., Frost, L.R., and Zhu, J. (2004) Infrared study of HDTMA+ intercalated montmorillonite. Spectrochimica Acta Part A, 60, 2853–2859.

    Article  Google Scholar 

  • He, H., Duchet, J., Galy, J., and Gerard, J.F. (2005) Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 288, 171–176.

    Article  Google Scholar 

  • Heinz, H. (2012) Clay minerals for nanocomposites and biotechnology: surface modification, dynamics and responses to stimuli. Clay Minerals, 47, 205–230.

    Article  Google Scholar 

  • Hermosin, M.C. and Cornejo, J. (1986) Methylation of sepiolite and palygorskite with diazomethane. Clays and Clay Minerals, 34, 591–596.

    Article  Google Scholar 

  • Herrera, N.N., Letoffe, J.M., Putaux, J.L., David, L., and Bourgeat-Lami, E. (2004) Aqueous dispersions of silane-functionalized Laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir, 20, 1564–1571.

    Article  Google Scholar 

  • Hrachová, J., Komadel, P., and Chodák, I. (2008) Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites. Journal of Materials Science, 43, 2012–2017.

    Article  Google Scholar 

  • Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E. (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. Journal of Composite Materials, 43, 3107–3123.

    Google Scholar 

  • Huskic, M., Zigon, M., and Ivanković, M. (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109–115.

    Article  Google Scholar 

  • Joo, J.H., Shim, J.H., Choi, J.H., Choi, C.H., Kim, D.S., and Yoon, J.S. (2008) Effect of the silane modification of an organoclay on the properties of polypropylene/clay composites. Journal of Applied Polymer Science, 109, 3645–3650.

    Article  Google Scholar 

  • Lakshminarayanan, S., Lin, B., and Sundararaj, U. (2009) Effect of clay surfactant type and clay content on the rheology and morphology of uncured fluoroelastomer/clay nanocomposites prepared by melt-mixing. Journal of Applied Polymer Science, 112, 3597–3604.

    Article  Google Scholar 

  • Lambert, J.-F. and Bergaya, F. (2013) Smectite-polymer nanocomposites. Pp. 670–706 in: Handbook of Clay Science, 2nd edition. Developments in Clay Science, Volume 5, Elsevier, Amsterdam.

    Google Scholar 

  • Marynick, D.S. and Dixon, D.A. (1977) Electron affinity of the methyl radical: Structures of CH3 and CH 3 . Proceedings of the National Academy of Sciences of the United States of America, 74, 410–413.

    Article  Google Scholar 

  • Mingliang, G. and Demin, J. (2008) Influence of organoclay prepared by solid state method on the morphology and properties of polyvinyl chloride/organoclay nanocomposites. Journal of Elastomers and Plastics, 40, 223–235.

    Article  Google Scholar 

  • Mittal, V., Kim, J.K., and Pal, K. (2011) Recent Advances in Elastomeric Nanocomposites. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  • Modesti, M., Lorenzetti, A., Bon, D., and Besco, S. (2005) Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposite. Polymer, 46, 10237–10245.

    Article  Google Scholar 

  • Monasterio, F.E. (2010) Effect of the organic groups of difunctional silanes on the preparation of coated clays for olefin polymer modification. Clay Minerals, 45, 489–502.

    Article  Google Scholar 

  • Morrison, R.T. and Boyd, R.N. (1983) Organic Chemistry, 4th edition. New York University, New York.

    Google Scholar 

  • Norrish, K. (1954) The Swelling of Montmorillonite. Division of Soils, C.S.I.R.O., Adelaide, Australia.

    Book  Google Scholar 

  • Orprecio, R. and Evans, C.H. (2003) Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. Journal of Applied Polymer Science, 90, 2103–2110.

    Article  Google Scholar 

  • Park, M., Shim, I.K., Jung, E.Y., and Choy, J.H. (2004) Modification of external surface of Laponite by silane grafting. Journal of Physical Chemistry of Solids, 65, 499–501.

    Article  Google Scholar 

  • Paul, D.R. and Robeson, L.M. (2008) Polymer nanotechnology: Nanocomposites. Polymer, 49, 3187–3204.

    Article  Google Scholar 

  • Pramanik, S., Das, G., and Karak, N. (2013) Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. The Royal Society of Chemistry Advances, 3, 4574–4581.

    Google Scholar 

  • Qian, Z., Zhou, H., Xu, X., Ding, Y., Zhang, S., and Yang, M. (2009) Effect of the grafted silane on the dispersion and orientation of clay in polyethylene nanocomposites. Polymer Composite, 30, 1234–1242.

    Article  Google Scholar 

  • Shanmugharaj, A.M., Rhee, K.Y., and Ryu, S.H. (2006) Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. Journal of Colloid and Interface Science, 298, 854–859.

    Article  Google Scholar 

  • Shen, W., He, H., Zhu, J., Yuan, P., and Frost, R.L. (2007) Grafting of montmorillonite with different functional silanes via two different reaction systems. Journal of Colloid and Interface Science, 313, 268–273.

    Article  Google Scholar 

  • Stuart, B.H. (2004) Infrared Spectroscopy: Fundamentals and Applications. Wiley, New Jersey.

    Book  Google Scholar 

  • Smidt, E., Bhm, K., and Schwanninger, M. (2011) The application of FT-IR spectroscopy in waste management. Pp. 405–430 in: Fourier Transforms — New Analytical Approaches and FTIR Strategies (G. Nikolic, editor). InTech, Rijeka, Croatia.

    Google Scholar 

  • Tian, R., Sitez, O., Li, M., Hu, W., Chabal, Y.J., and Gao, J. (2010) Infrared characterization of interfacial Si-O bond formation on silanized flat SiO2/Si surfaces. Langmuir, 26, 4563–4566.

    Article  Google Scholar 

  • Valsecchi, R., Torlaj, L., Turri, S., Tonelli, C., and Levi, M. (2011) Barrier properties in hydrogenated acrylonitrile butadiene rubber compounds containing organoclays and perfluoropolyether additives. Journal of Applied Polymer Science, 119, 3476–3482.

    Article  Google Scholar 

  • Wang, Y., Wang, X., Duan, Y., Liu, Y., and Du, S. (2011) Modification of montmorillonite with poly(oxypropylene) amine hydrochlorides: Basal spacing, amount intercalated, and thermal stability. Clays and Clay Minerals, 59, 507–517.

    Article  Google Scholar 

  • Wu, Y.P., Jia, Q.X., Yu, D.S., and Zhang, L.Q. (2004) Modeling Young’s modulus of rubber—clay nanocomposites using composite theories. Polymer Testing, 23, 903–909.

    Article  Google Scholar 

  • Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A., and Vaia, R. (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 2979–2990.

    Article  Google Scholar 

  • Xu, X., Ding, Y., Wang, F., Wen, B., Zhang, J., Zhang, S., and Yang, M. (2009) Effects of silane grafting on the morphology and thermal stability of poly(ethylene terephthalate)/clay nanocomposites. Polymer Composite, 31, 825–834.

    Google Scholar 

  • Zhu, L. and Xanthos, M. (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. Journal of Applied Polymer Science, 93, 1891–1899.

    Article  Google Scholar 

  • Zumdahl, S.S. (1999) Chemistry. 5th edition. Houghton Mifflin Harcourt, Boston, Massachusetts, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttandaraman Sundararaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehpour, M., Gelves, G.A. & Sundararaj, U. Modification of Montmorillonite with Alkyl Silanes and Fluorosurfactant for Clay/fluoroelastomer (FKM) Nanocomposites. Clays Clay Miner. 63, 1–14 (2015). https://doi.org/10.1346/CCMN.2015.0630101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630101

Key Words

Navigation