Skip to main content
Log in

Analyzing Expanding Clays by Thermoporometry Using a Stochastic Deconvolution of the DSC Signal

  • Published:
Clays and Clay Minerals

Abstract

A version of thermoporometry dedicated to analyzing the pore network of expanding clays is proposed here. The blurred, wide Differential Scanning Calorimetry (DSC) peak obtained upon the melting of a frozen clay sample is processed by means of a deconvolution analysis based on searching for such a temperature distribution of “pulse-like heat events” which, convolved with the apparatus function, gives a minimal deviation from the observed heat flux function, i.e. the calorimetric signal. As a result, a sharp thermogram was obtained which can be transformed easily into the pore-size distribution curve. Results obtained for samples of two Clay Minerals Society Source Clays (montmorillonites SWy-2 from Wyoming and STx-1b from Texas) at different water contents indicate a greater resolution and sensitivity than that achieved by classical thermoporometry using the unprocessed DSC signal. Phenomena corresponding to the evolution of the pore network as a function of the water content have been detected in samples with large water contents subjected to free drying prior to the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K.E., Radhakrishnan, R., and Sliwinska-Bartkowiak, M. (2006) Effects of confinement on freezing and melting. Journal of Physics: Condensed Matter, 18, R15–R68.

    Google Scholar 

  • Bergaya, F. and Lagaly, G. (2001) Surface modification of clay minerals. Applied Clay Science, 19, 1–30.

    Article  Google Scholar 

  • Beurroies, I., Denoyel, R., Llewellyn, P., and Rouquerol, J. (2004) A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: application to the interpretation of thermoporometry data. Thermochimica Acta, 421, 11–18.

    Article  Google Scholar 

  • Bogdan, A. and Kulmala, M. (1997) DSC study of the freezing and thawing behavior of pure water and binary H2O/HNO3 and H2O/HCl systems adsorbed by pyrogenic silica: implications for the atmosphere. Journal of Aerosol Science, 28, Suppl. 1, S507–S508.

    Article  Google Scholar 

  • Brun, M., Lallemand, A., Quinson, J-F., and Eyraud, Ch. (1977) A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry. Thermochimica Acta, 21, 59–88.

    Article  Google Scholar 

  • Carrado, K.A. and Komadel, P. (2009) Acid activation of bentonites and polymer-clay nanocomposites. Elements, 5, 111–116.

    Article  Google Scholar 

  • Dogan, A.U., Dogan, M, Onal, M., Sarikaya, Y., Aburub, A., and Wurster, D.E. (2006) Baseline studies of the Clay Minerals Society Source Clays: Specific Surface Area by Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 54, 62–66.

    Article  Google Scholar 

  • Dogan, M., Dogan, A.U., Yesilyurt, F.I., Alaygut, D., Buckner, I., and Wurster, D.E. (2007) Baseline studies of the Clay Minerals Society Special Clays: Specific Surface Area by Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 55, 534–541.

    Article  Google Scholar 

  • Efimov, S.S. (1986) Temperature dependence of the heat of crystallization of water. Journal of Engineering Physics and Thermophysics, 49, 1229–1233.

    Article  Google Scholar 

  • Fabbri, A., Fen-Chong T., and Coussy O. (2006) Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials. Cold Regions Science and Technology, 44, 52–66.

    Article  Google Scholar 

  • Fung, C.A.F.K and Burke, M.F. (1996) Investigation of the behaviour of water on the surface of modified silica using differential scanning calorimetry. Journal of Chromatography A, 752, 41–57.

    Article  Google Scholar 

  • Gates, W., Bouazza, M., and Churchman, G. (2009) Bentonite clay keeps pollutants at bay. Elements, 5, 105–110.

    Article  Google Scholar 

  • Höhne, G.W.H., Hemminger, W.F., and Flammersheim, H.-J. (2003) Differential Scanning Calorimetry. Springer-Verlag, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  • Homshaw, L.G. (1980) Freezing and melting temperature hysteresis of water in porous materials: Application to the study of pore form. European Journal of Soil Science, 31, 399–414.

    Article  Google Scholar 

  • Homshaw, L.G. and Cambier, P. (1980) Wet and dry pore size distribution in a kaolinitic soil before and after removal of iron and quartz. European Journal of Soil Science, 31, 415–428.

    Article  Google Scholar 

  • Horiguchi, K. (1985) Determination of unfrozen water content by DSC. Proceedings of the 4th International Symposium on Ground Freezing, Sapporo, Japan, Vol. 1. A.A. Balkema, Rotterdam, pp. 33–38.

    Google Scholar 

  • Ishikiriyama, K., Todoki, M., Min, K.H., Yonemori, S., and Noshiro, M. (1996) Thermoporosimetry: Pore size distribution measurements for microporous glass using differential scanning calorimetry. Journal of Thermal Analysis, 46, 1177–1189.

    Article  Google Scholar 

  • Iza, M., Woerly, S., Danumah, C., Kaliaguine, S., and Bousmina, M. (2000) Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements: thermoporometry. Polymer, 41, 5885–5893.

    Article  Google Scholar 

  • Kaneko, K. (1994) Determination of pore size and pore size distribution: 1. Adsorbents and catalysts. Journal of Membrane Science, 96, 59–89.

    Article  Google Scholar 

  • Montes, G., Duplay, J., Martinez, L., and Mendoza, C. (2003) Swelling-shrinkage kinetics of MX80 bentonite. Applied Clay Science, 22, 279–293.

    Article  Google Scholar 

  • Neffati, R. and Rault, J. (2001) Pore size distribution in porous glass: fractal dimension obtained by calorimetry. The European Physical Journal B, 21, 205–210.

    Article  Google Scholar 

  • Nevzorov, A.N. (2006) Internal mechanism of metastable liquid water crystallization and its effects on intracloud processes. Izvestiya, Atmospheric and Oceanic Physics, 42, 765–772.

    Google Scholar 

  • Opitz, A., Scherge, M., Ahmed, S.I.-U., and Schaefer, J.A. (2007) A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques. Journal of Applied Physics, 101, 6064310.

    Google Scholar 

  • Price, D.M. and Bashir, Z. (1995) A study of the porosity of water plasticised polyacrylonitrile films by thermal analysis and microscopy. Thermochimica Acta, 249, 351–366.

    Article  Google Scholar 

  • Ravikovitch, P., Wei, D., Chueh, W.T., Haller, G.L., and Neimark, A.V. (1997) Evaluation of pore structure parameters of MCM-41 catalyst supports and catalysts by means of nitrogen and argon adsorption. Journal of Physical Chemistry, 101, 3671–3679.

    Article  Google Scholar 

  • Rigacci, A., Achard, P., Ehrburger-Dolle, F., and Pirard, R. (1998) Structural investigation in monolithic silica aerogels and thermal properties. Journal of Non-Crystalline Solids, 225, 260–265.

    Article  Google Scholar 

  • Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K. (1994) Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66, 1739–1758.

    Article  Google Scholar 

  • Salles, F., Beurroies, I., Bildstein, O., Jullien, M., Raynal, J., Denoyel, R., and Van Damme, H. (2008) A calorimetric study of mesoscopic swelling and hydration sequence in solid Na-montmorillonite. Applied Clay Science, 39, 186–201.

    Article  Google Scholar 

  • Stepkowska, E.T., Pérez-Rodríguez, J.L., Maqueda C., and Starnawska, E. (2004) Variability in water sorption and in particle thickness of standard smectites. Applied Clay Science, 24, 185–199.

    Article  Google Scholar 

  • Swenson, J., Elamin, K., Jansson, H., and Kittaka, S. (2013) Why is there no clear glass transition of confined water? Chemical Physics, 424, 20–25.

    Article  Google Scholar 

  • Titulaer, M.K., Van Miltenburg, J.C., Jansen, J.B.H., and Geus, J.W. (1995) Thermoporometry applied to hydrothermally aged silica hydrogels. Recueil Des Travaux Chimiques Des Pays Bas, 114, 361–370.

    Article  Google Scholar 

  • Torralvo, M.J., Grillet, Y., Llewellyn, P.L., and Rouquerol, F. (1998) Microcalorimetric study of argon, nitrogen, and carbon monoxide adsorption on mesoporous Vycor glass. Journal of Colloid and Interface Science, 206, 527–531.

    Article  Google Scholar 

  • Turov, V.V. and Leboda, R., (1999) Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents. Advances in Colloid and Interface Science, 79, 173–211.

    Article  Google Scholar 

  • Velde, B., Moreau, E., and Terribile, F. (1996) Pore networks in an Italian vertisol: quantitative characterization by two dimensional image analysis. Geoderma, 72, 271–285.

    Article  Google Scholar 

  • Yang Tao, Xiao-Dong Wen, Junfen Li, and Liming Yang (2006) Theoretical and experimental investigations on the structures of purified clay and acid-activated clay. Applied Surface Science, 252, 6154–6161.

    Article  Google Scholar 

  • Zuber, B. and Marchand, J. (2000) Modeling the deterioration of hydrated cement systems exposed to frost action. Part 1: Description of the mathematical model. Cement and Concrete Research, 30, 1929–1939.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kozlowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlowski, T., Walaszczyk, Ł. Analyzing Expanding Clays by Thermoporometry Using a Stochastic Deconvolution of the DSC Signal. Clays Clay Miner. 62, 386–402 (2014). https://doi.org/10.1346/CCMN.2014.0620503

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2014.0620503

Key Words

Navigation