Skip to main content
Log in

Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1M Polytypes

  • Published:
Clays and Clay Minerals

Abstract

The crystal chemical features of the bulk and the uppermost (001) surface layers of freshly cleaved surfaces of two trioctahedral Fe-rich mica-1M (space group C2/m) polytypes, i.e. a tetraferriphlogopite from an alkaline-carbonatitic complex near Tapira, Belo Horizonte, Minas Gerais, Brazil, and an Fe2+-bearing phlogopite containing less tetrahedral Fe3+ from the Kovdor carbonatite-bearing, alkaline-ultrabasic complex, Kola Peninsula, Russia, are explored here. Mineral-surface effects were investigated by X-ray Photoelectron Spectroscopy (XPS) and compared to the bulk structure derived from single-crystal X-ray diffraction data. Based on microprobe analysis and the X-ray study, the chemical formulae are [XII](K0.99)[VI](Fe 2+0.08 Fe 3+0.15 Mg2.76Ti0.01)[IV](Fe 3+0.82 Si3.18)O10.37F0.24(OH)1.39 and [XII](K0.94Na0.06)[VI](Fe 2+0.17 Fe 3+0.05 Mg2.75Mn0.01Ti0.05)[IV](Fe 3+0.16 Al0.84Si3.00)O10.21F0.35(OH)1.44 for tetraferriphlogopite and Fe-bearing phlogopite, respectively. The tetrahedrally coordinated sites of the two minerals differ, where Fe-for-Si substitution is at 20.5% in tetra-ferriphlogopite and at 4% in Fe-bearing phlogopite.

The bulk study showed that Fe3+ substitution increases the tetrahedral sheet thickness and the mean tetrahedral edge lengths in tetra-ferriphlogopite compared to Fe-bearing phlogopite. The tetrahedral rotation angle (α) changes remarkably from tetra-ferriphlogopite (α = 10.5°) to the Fe-bearing phlogopite (α = 8.5°), thus indicating a significantly greater initial lateral sheet misfit (leading to a greater tetrahedral ring distortion) between the tetrahedral and the octahedral sheets in the tetra-ferriphlogopite compared to Fe-bearing phlogopite. The Fe3+ substitution for Si and the differences in lateral dimensions of the tetrahedral and octahedral sheets affect the tetrahedral flattening angle (τ), with τ = 109.9° for tetraferriphlogopite and τ = 110.7° for Fe-bearing phlogopite.

The binding energy (BE) of photoelectron peaks in XPS is dependent on the chemical state of atoms and on their local environment at the near surface. The Mg in both phlogopites is bonded to F, with the BE of Mg1s increasing as coordinated oxygen atoms are substituted by fluorine. For Fe-rich phlogopite (BE = 1306.8 eV), the binding energy is greater than for tetra-ferriphlogopite (BE = 1305.9 eV), and this is consistent with the bulk composition having greater F-for-OH substitution in Fe-rich phlogopite (F0.35vs. tetra-ferriphlogopite, F0.24 atoms per formula unit).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, S.W. (1984) Crystal chemistry of the true micas. Pp. 13–60 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C.

    Article  Google Scholar 

  • Barr, T.L., Seal, S., Wozniak, K., and Klinowaki, J. (1997) ESCA studies of the coordination state of aluminum in oxide environments. Journal of Chemical Society, Faraday Transactions, 93, 181–186.

    Article  Google Scholar 

  • Bhattacharyya, K.G. (1993) XPS study of mica surfaces. Journal of Electron Spectroscopy and Related Phenomena, 63, 289–306.

    Article  Google Scholar 

  • Biino, G.G. and Gröning, P. (1998a) Cleavage mechanism and surface chemical characterization of phengitic muscovite and muscovite as constrained by X-ray photoelectron spectroscopy. Physics and Chemistry of Minerals, 25, 168–181.

    Article  Google Scholar 

  • Biino, G.G. and Gröning, P. (1998b) X-ray photoelectron spectroscopy (XPS) used as a structural and chemical surface probe on aluminosilicates minerals. European Journal of Mineralogy, 10, 423–437.

    Article  Google Scholar 

  • Biino, G.G., Mannella, N., Kay, A., Mun, B., and Fadley, C. (1999) Surface chemical characterization and surface diffraction effects of real margarite (001): An angle-resolved XPS investigation. American Mineralogist, 84, 629–638.

    Article  Google Scholar 

  • Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Pp. 1–97 in: Micas: Crystal Chemistry and Metamorphic Petrology (A. Mottana, F.P. Sassi, J.B. Thompson Jr., and S. Guggenheim, editors). Reviews in Miner alogy and Geochemis try, 46, Mineralogical Society of America and the Geochemical Society, Washington, D.C.

    Google Scholar 

  • Brigatti, M.F., Medici, L., and Poppi, L. (1996a) Refinement of the structure of natural ferriphlogopite. Clays and Clay Minerals, 44, 540–545.

    Article  Google Scholar 

  • Brigatti, M.F., Medici, L., Saccani, E., and Vaccaro, C. (1996b) Crystal-chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil. American Mineralogist, 81, 913–927.

    Article  Google Scholar 

  • Brigatti, M.F., Lalonde, A.E., and Medici, L. (1999) Crystal chemistry of [4]Fe3+-rich phlogopites: a combined single-crystal X-ray and Mössbauer study. Pp. 317–327 in: Clays for our Future (H. Kodama, A.R. Mermut, K. Torrance, editors). Proceedings of the 11th International Clay Conference, Ottawa, Mineralogical Association of Canada.

    Google Scholar 

  • Brigatti, M.F., Medici, L., and Poppi, L. (2001) Crystal chemistry of trioctahedral micas-1M from the Alto Paranaíba igneous province, southeastern Brazil. The Canadian Mineralogist, 39, 1933–1345.

    Google Scholar 

  • Brigatti, M.F., Guidotti, C.V., Malferrari, D., and Sassi, F.P. (2008) Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. American Mineralogist, 93, 396–408.

    Article  Google Scholar 

  • Brigatti, M.F., Malferrari, D., Laurora, A., and Elmi, C. (2011) Structure and mineralogy of layer silicates: recent perspectives and new trends. Pp. 1–71 in: Layered Mineral Structures and their Application in Advanced Technologies (M.F. Brigatti and A. Mottana, editors). EMU Notes in Mineralogy, 11, European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.

    Google Scholar 

  • Brod, J.A., Gaspar, J.C., de Araújo, D.P., Gibson, S.A., Thompson, R.N., and Junqueira-Brod, T.C. (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. Journal of Asian Earth Sciences, 19, 265–296.

    Article  Google Scholar 

  • Bronold, M., Tomm, Y., and Jaegermann, W. (1992) Surface states on cubic d-band semiconductor pyrite (FeS2). Surface Science, 314, L931–L936.

    Article  Google Scholar 

  • Bruker (2003) SMART and SAINT-Plus, version 6.01. Bruker AXS Inc., Madison, Wisconsin.

    Google Scholar 

  • Cibin, C., Mottana, A., Marcelli, A., and Brigatti, M.F. (2005) Potassium coordination in trioctahedral micas investigated by K-edge XANES spectroscopy. Mineralogy and Petrology, 85, 67–87.

    Article  Google Scholar 

  • Donnay, G., Morimoto, N., Takeda, H., and Donnay, J.D.H. (1964) Trioctahedral one-layer micas: I. Crystal structure of a synthetic iron mica. Acta Crystallographica, 17, 1369–1373.

    Article  Google Scholar 

  • Elmi, C., Brigatti, M.F., Pasquali, L., Montecchi, M., Laurora, A., Malferrari, D., and Nannarone, S. (2010) Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy). Physics and Chemistry of Minerals, 37, 561–569.

    Article  Google Scholar 

  • Elmi, C., Brigatti, M.F., Pasquali, L., Montecchi, M., Laurora, A., Malferrari, D., and Nannarone, S. (2011) High-temperature vesuvianite: crystal chemistry and surface considerations. Physics and Chemistry of Minerals, 38, 459–468.

    Article  Google Scholar 

  • Elmi, C., Brigatti, M.F., Guggenheim, S., Pasquali, L., Montecchi, M., Laurora, A., Malferrari, D., and Nannarone, S. (2013) Sodian muscovite-2M1: crystal chemistry and surface features. The Canadian Mineralogist, 51, 319–328.

    Article  Google Scholar 

  • Fechtelkord, M. and Langner, R. (2013) Aluminum ordering and clustering in Al-rich synthetic phlogopite: The influence of fluorine investigated by {19F/1H} 29Si CPMAS NMR spectroscopy. American Mineralogist, 98, 120–131.

    Article  Google Scholar 

  • Fechtelkord, M., Behrens, H., Holtz, F., Fyfe, C.A., Groat, L.A., and Raudsepp, M. (2003a) Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from 29Si, 1H, and 19F MAS NMR spectroscopies. American Mineralogist, 88, 47–53.

    Article  Google Scholar 

  • Fechtelkord, M., Behrens, H., Holtz, F., Bretherton, J.L., Fyfe, C.A., Groat, L.A., and Raudsepp, M. (2003b) Influence of F content on the composition of Al-rich synthetic phlogopite: Part II. Probing the structural arrangement of aluminum in tetrahedral and octahedral layers by 27Al MQMAS and 1H/19F-27Al HETCOR and REDOR experiments. American Mineralogist, 88, 1046–1054.

    Article  Google Scholar 

  • Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M., Sokolova, E., Uvarova, Y., and Khomyakov, A.P. (2001) First structure determination of a MDO-2O mica polytype associated with a 1M polytype. European Journal of Mineralogy, 13, 1013–1023.

    Article  Google Scholar 

  • Fleet, M.E. (2003) Rock-Forming Minerals, Volume 3A. Sheet Silicates: Micas. 2nd edition, Geological Society, London.

    Google Scholar 

  • Foley, S.F. (1989) Experimental constraints on phlogopites chemistry in lamproites: 2. The effect of pressure-temperature variations. European Journal of Mineralogy, 2, 327–341.

    Article  Google Scholar 

  • Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S. (2004) Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36, 1564–1574.

    Article  Google Scholar 

  • Guggenheim, S. (2011) An overview of order/disorder in hydrous phyllosilicates. Pp. 72–111: Layered Mineral Structures and their Application in Advanced Technologies (M.F. Brigatti and A. Mottana, editors). EMU Notes in Mineralogy, 11, European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.

    Google Scholar 

  • Hasha, D., de Saldarriaga, L., Saldarriaga, C., Hathway, P.E., Cox, D.F., and Davis, M. (1988) Studies of silicoalumino-phosphates with the sodalite structure. Journal of the American Chemical Society, 110, 2127–2135.

    Article  Google Scholar 

  • Haycock, D.E., Kasrai, M., Nicholls, C.J., and Urch, D.S. (1978) The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. Journal of the Chemical Society, Dalton Transactions, 12, 1791–1796

    Article  Google Scholar 

  • Johns, W.D. and Gier, S. (2001) X-ray photoelectron spectroscopic study of layer charge magnitude in micas and illitesmectite clays. Clay Minerals, 36, 355–367.

    Article  Google Scholar 

  • Krasnova, N.I. (2001) The Kovdor phlogopite deposit, Kola Peninsula, Russia. The Canadian Mineralogist, 39, 33–44.

    Article  Google Scholar 

  • Lalonde, A.E., Rancourt, D.G., and Chao, G.Y. (1991) Febearing trioctahedral micas from Mont Saint-Hilaire, Québec, Canada. Mineralogical Magazine, 60, 447–460.

    Article  Google Scholar 

  • Laurora, A., Malferrari, D., Brigatti, M.F., Mottana, A., Caprilli, E., Giordano, G., and Funiciello, R. (2009) Crystal chemistry of trioctahedral micas in the top sequences of the Colli Albani volcano, Roman Region, Central Italy. Lithos, 113, 507–520.

    Article  Google Scholar 

  • Meyrowitz, R. (1970) New semi-microprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposi t ion. Analytical Chemistry, 42, 1110–1113.

    Article  Google Scholar 

  • Mittal, V.K., Bera, S., Nithya, R., Srinivasan, M.P., Velmurugan, S., and Narasimhan, S.V. (2004) Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS. Journal of Nuclear Materials, 335, 302–310.

    Article  Google Scholar 

  • Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Malkovets, V.G., and Yanga, P. (2009) Major- and traceelement compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos, 112S, 372–384.

    Article  Google Scholar 

  • Schoonheydt, R.A. and Johnston, C.T. (2011) The surface properties of clay minerals. Pp. 337–373 in: Layered Mineral Structures and their Application in Advanced Technologies (M.F. Brigatti and A. Mottana, editors). EMU Notes in Mineralogy, 11, European Mineralogical Union and the Mineralogical Society of Great Britain and Ireland.

    Google Scholar 

  • Seyama, H. and Soma, M. (1984) X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80, 237–248

    Article  Google Scholar 

  • Seyama, H. and Soma, M. (1987) Fe2p spectra of silicate minerals. Journal of Electron Spectroscopy and Related Phenomena, 42, 97–101.

    Article  Google Scholar 

  • Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.

    Google Scholar 

  • Sheldrick, G.M. (1997) SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

    Google Scholar 

  • Shirley, D.A. (1972) Effect of atomic and extra-atomic relaxation on atomic binding energies. Chemical and Physical Letters, 16, 220–5.

    Article  Google Scholar 

  • Wagner, C.D., Passoja, D.E., Hillery, H.F., Kinisky, T.G., Six, H.A., Jansen, W.T., and Taylor, J.A. (1982) Auger and photoelectron line energy relationship in aluminum-oxygen and silicon-oxygen compounds. Journal of Vacuum Science and Technology, 21, 933–944.

    Article  Google Scholar 

  • Weiss, Z., Rieder, M., and Chmielovà, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665–682.

    Article  Google Scholar 

  • Zakaznova-Herzog, V.P., Nesbitt, H.W., Bancroft, G.M., and Tsese, J.S. (2008) Characterization of leached layers on olivine and pyroxenes using high-resolution XPS and density functional calculations. Geochimica et Cosmochimica Acta, 72, 69–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Guggenheim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmi, C., Brigatti, M.F., Guggenheim, S. et al. Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1M Polytypes. Clays Clay Miner. 62, 243–252 (2014). https://doi.org/10.1346/CCMN.2014.0620401

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2014.0620401

Key Words

Navigation