Skip to main content
Log in

Natural Clay-Sized Glauconite in the Neogene Deposits of the Campine Basin (Belgium)

  • Published:
Clays and Clay Minerals

Abstract

Natural clay-sized glauconite has the same mineralogical composition as sand-sized glauconite pellets but occurs in <2 μm clay fractions. This particular glauconite habit has been described previously from soil environments resulting from pelletal weathering but is rarely reported in higher-energy sedimentary environments. In the present study, clay-sized glauconite was identified as a common constituent in transgressive Neogene glauconite pellet-rich deposits of the southern North Sea in Belgium. X-ray diffraction results revealed that the characteristics of the clay-sized glauconite are very similar to the associated glauconite pellets in sand deposits. Both glauconite types consisted of two glauconite-smectite R1 phases with generally small percentages of expandable layers (<30%) with d060 values ranging between 1.513 Å and 1.519 Å. Clay-sized glauconite was not neoformed but formed by the disintegration of sand-sized glauconite pellets which were abraded or broken up during short-distance transport within the sedimentary basin or over the hinterland. Even in an environment where authigenic glauconite pellets occur, minimal transport over transgressive surfaces is sufficient to produce clay-sized glauconite. Furthermore, clay-sized glauconite can be eroded from marine deposits and subsequently resedimented in estuarine deposits. Clay-sized glauconite is, therefore, a proxy for the transport intensity of pelletal glauconite in energetic depositional environments and, moreover, indicates reworking in such deposits which lack pelletal glauconite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriaens, R. (2009) Mineralogical and crystal-chemical analysis of glauconites in the Upper-Cretaceous and Cenozoic strata of the Southern North Sea basin. Unpublished Masters thesis, University of Leuven, Leuven, Belgium, 105 pp.

    Google Scholar 

  • Amorosi, A. (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research, 65, 419–425.

    Google Scholar 

  • Amorosi, A. (1997) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology, 109, 135–153.

    Article  Google Scholar 

  • Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 73–78.

    Article  Google Scholar 

  • Bailey, S.W. (1988) Hydrous Phyllosilicates (exclusive of Micas). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C., 725 pp.

    Google Scholar 

  • Baioumy, H. and Boulis, S. (2012) Non-pelletal glauconite from the Campanian Qusseir Formation, Egypt: Implication for glauconitisation. Sedimentary Geology, 249, 1–9.

    Article  Google Scholar 

  • Baldermann, A., Grathoff, G.H., and Nickel, C. (2012) Micromileu-controlled glauconitisation in fecal pellets at Oker (Central Germany). Clay Minerals, 47, 513–538.

    Article  Google Scholar 

  • Banerjee, S., Jeevankumar, S., and Eriksson, P.G. (2008) Mg-rich ferric illite in marine transgressive and highstand systems tracts: examples from the Paleoproterozoic Semri Group, central India. Precambrian Research, 162, 212–226.

    Article  Google Scholar 

  • Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., and Sarkar, U. (2012) Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology, 30, 144–160.

    Article  Google Scholar 

  • Bell, D.H. and Goodell, H.G. (1967) A comparative study of glauconite and the associated clay fraction in modern marine sediments. Sedimentology, 9, 169–202.

    Article  Google Scholar 

  • Berg-Madsen, V. (1983) High-alumina glaucony from the middle Cambrian of Öland and Bornholm, Southern Baltoscandia. Journal of Sedimentary Petrology, 53, 875–893.

    Google Scholar 

  • Buatier, M., Honnorez, J., and Ehret, G. (1989) Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center. Clays and Clay Minerals, 37, 532–541.

    Article  Google Scholar 

  • Buckley, H.A., Bevan, J.C., Brown, K.M., Johnson, L.R., and Farmer, V.C. (1978) Glauconite and celadonite: two separate mineral species. Mineralogical Magazine, 42, 373–382.

    Article  Google Scholar 

  • Chafetz, H.S. and Reid, A. (2000) Syndepositional, shallow water precipitation of glauconitic minerals. Sedimentary Geology, 136, 29–42.

    Article  Google Scholar 

  • Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, 623 pp.

    Book  Google Scholar 

  • Cudzil, M.R. and Driese, S.G. (1987) Fluvial, tidal and storm sedimentation in the Chilhowee Group (Lower Cambrian), northeastern Tennessee, U.S.A. Sedimentology, 34, 861–883.

    Article  Google Scholar 

  • De Meuter, F.J. and Laga, P. (1976) Lithostratigraphy and biostratigraphy based on benthonic foraminifera of the Neogene deposits of northern Belgium. Bulletin de Société belge Géologie, 85, 133–152.

    Google Scholar 

  • Derkowski, A., Środoń, J., Franus, J., Uhlík, P., Banaś, M., Zieliński, G., Čaplovičova, M., and Franus, M. (2009) Progressive dissolution of glauconite and its implications for the methodology of K-Ar and Rb-Sr dating. Clays and Clay Minerals, 57, 531–554.

    Article  Google Scholar 

  • Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H., and Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914–934.

    Google Scholar 

  • El Albani, A. (2005) Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova, 17, 537–544.

    Article  Google Scholar 

  • Gertsch, B., Adatte, T., Keller, G., Aziz, A.M., Tantawy, A., Berner, Z., Mort, H.P., and Fleitmann, D. (2010) Middle and late Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco. Sedimentology, 57, 1430–1462.

    Article  Google Scholar 

  • Gonzalez, R., Dias, J.M.A., Lobo, F., and Mendes, I. (2004) Sedimentological and paleoenvironmental characterization of transgressive sediments on the Guadiana Shelf (Northern Gulf of Cadiz, SW Iberia). Quaternary International, 120, 133–144.

    Article  Google Scholar 

  • Güven, N. (1988) Smectites. Pp 497–559 in: Hydrous Phyllosilicates. Reviews in Mineralogy, 19. Mineralogical Society of America, Washington DC.

    Article  Google Scholar 

  • Harris, W.B., Fullager, P.D., and Tovo, L.T. (2007) Significance of young Paleocene Rb-Sr glauconite dates from the Lang Syne Formation, Savannah River site, South Carolina. Southeastern Geology, 37, 55–72.

    Google Scholar 

  • Hesselbo, S.P. and Huggett, J.M. (2001) Glaucony in oceanmargin sequence stratigraphy (Oligocene-Pliocene, Offshore New Jersey, USA; ODP Leg 174A). Journal of Sedimentary Research, 71, 598–606.

    Article  Google Scholar 

  • Ireland, B.J., Curtis, C.D., and Whiteman, J.A. (1983) Compositional variation within some glauconites and illites and implications for their stabi l ity and origins. Sedimentology, 30, 769–786.

    Article  Google Scholar 

  • Jackson, M.L. (1975) Soil Chemical Analysis — Advanced Course, 2nd edition. Published by the author, Madison, Wisconsin, USA, 895 pp.

    Google Scholar 

  • Jimenez-Millan, J., Molina, J.M., Nieto, F., Nieto, L., and Ruiz-Ortiz, P.A. (1998) Glauconite and phosphate peloids in Mesozoic carbonate sediments (Eastern Subbetic Zone, Betic Cordilleras, SE Spain). Clay Minerals, 33, 547–559.

    Article  Google Scholar 

  • Kleeberg, R. (2005) Results of the second Reynolds Cup contest in quantitative mineral analysis. International Union of Crystallography. Commission on Powder Diffraction Newsletter, 20, 22–24.

    Article  Google Scholar 

  • Louwye, S. (2001) New species of dinoflagellate cysts from the Berchem formation, Miocene, northern Belgium (southern North Sea basin). Geobios, 34, 121–130.

    Article  Google Scholar 

  • Louwye, S. (2005) The Early and Middle Miocene transgression at the southern border of the North Sea Basin (northern Belgium). Geological Journal, 40, 441–456.

    Article  Google Scholar 

  • Louwye, S. and De Schepper, S. ( 2010). The Miocene-Pliocene hiatus in the southern North Sea Basin (northern Belgium) revealed by dinoflagellate cysts. Geological Magazine, 5, 760–776.

    Article  Google Scholar 

  • Louwye, S. and Laga, P. (1998) Dinoflagellate cysts of the shallow marine Neogene succession in the Kalmthout well, northern Belgium. Bulletin of the Geological Society of Denmark, 45, 73–86.

    Google Scholar 

  • Louwye, S., De Coninck, J., and Verniers, S. (1999) Dinoflagellate cyst stratigraphy and depositional history of Miocene and Lower Pliocene formations in northern Belgium (southern North Sea basin). Geologie en Mijnbouw, 78, 31–46.

    Article  Google Scholar 

  • Louwye, S., De Conick, J., and Verniers, J. (2000) Shallow marine Lower and Middle Miocene deposits at the southern margin of the North Sea Basin (northern Belgium): dinoflagellate cyst biostratigraphy and depositional history. Geological Magazine, 137, 381–394.

    Article  Google Scholar 

  • Louwye, S., De Schepper, S., Laga, P., and Vandenberghe, N. (2006) The Upper Miocene of the southern North Sea Basin (northern Belgium): a palaeoenvironmental and stratigraphical reconstruction using dinoflagellate cysts. Geological Magazine. 144, 33–52.

    Article  Google Scholar 

  • Maréchal, R. (1994) A new lithostratigraphic scale for the Palaeogene of Belgium. Bulletin de la Société belge de Géologie, 102, 215–229.

    Google Scholar 

  • McRae, S.C. (1972) Glauconite. Earth-Science Reviews, 8, 397–440.

    Article  Google Scholar 

  • Meunier, A. (2005) Clays. Springer-Verlag, Berlin, 472 pp.

    Google Scholar 

  • Meunier, A. and El Albani, A. (2007) The glauconite-Fe-illite-Fe-smectite problem: a critical review. Terra Nova, 19, 95–104.

    Article  Google Scholar 

  • Moore, D.M. and Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, second edition. Oxford University Press, Oxford, New York, 371 pp.

    Google Scholar 

  • Odin, G.S., (1982) Numerical Dating in Stratigraphy. Wiley Interscience, New York, 1094 pp.

    Google Scholar 

  • Odin, G.S. and Fullager, P.D. (1988) Geological significance of glaucony facies. Pp. 295–332 in: Green Marine Clays (G.S. Odin, editor). Developments in Sedimentology, 45, Elsevier, Amsterdam.

    Google Scholar 

  • Odin, G.S. and Matter, A. (1981) De glauconiarum origine. Sedimentology, 28, 611–641.

    Article  Google Scholar 

  • Odin, G.S., Hunziker, J.C., Keppens, E., Laga, P.G., and Pasteels, P. (1974) Analyse radiométrique de glauconies par les méthodes au strontium et a l’argon; L’Oligo-Miocène de Belgique. Bulletin de Société belge Géologie, 83, 35–48.

    Google Scholar 

  • Omotoso, O., McCarthy, D.K., Hillier, S., and Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54, 748–760.

    Article  Google Scholar 

  • Parry, W.T. and Reeves, Jr., C.C. (1966) Lacustrine glauconitic mica from Pluvial Lake Mound, Lynn and Terry Counties, Texas. American Mineralogist, 51, 229–235.

    Google Scholar 

  • Porrenga, D.H. (1968) Non-marine glauconitic illite in the Lower Oligocene of Aardebrug, Belgium. Clay Minerals, 7, 421–430.

    Article  Google Scholar 

  • Potter, P.E., Maynard, B.J., and Depetris, J.P. (2005) Mud and Mudstones. Springer-Verlag, New York, 297 pp.

    Google Scholar 

  • Sakharov, B.A., Lindgreen, H., Salyn, A.L., and Drits, V.A. (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays and Clay Minerals, 47, 555–566.

    Article  Google Scholar 

  • Seed, D.P. (1968) The analysis of the clay content of some glauconite oceanic sediments. Journal of Sedimentary Petrology, 38, 229–231.

    Article  Google Scholar 

  • Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C., and Eberl, D.D. (2001) Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals, 49, 514–528.

    Article  Google Scholar 

  • Tedrow, J.C.F. (1986) Soils of New Jersey. Robert E. Krieger Publishing Company, Malabar, Florida, USA, 479 pp.

    Google Scholar 

  • Tedrow, J.C.F. (2002) Greensand and Greensand Soils of New Jersey: a review. Department of Ecology, Evolution and Natural Resources Rutgers University, New Brunswick, New Jersey, USA, 40 pp.

    Google Scholar 

  • Udgata, D.B.P. (2007) Glauconite as an indicator of sequence stratigraphic packages in a lower Paleocene passive-margin shelf succession, Central Alabama. Masters thesis, Auburn University, Alabama, USA, 124 pp.

    Google Scholar 

  • Van Ranst, E. and De Coninck, F. (1983) Evolution of glauconite in imperfectly drained soils of the Belgian Campine. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 146, 415–426.

    Article  Google Scholar 

  • Vandenberghe, N., Laga, P., Steurbaut, E., and Vail, P.R. (1998) Tertiary sequence stratigraphy at the southern border of the North Sea basin in Belgium. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM special publication No 60, pp. 119–154, Society for Sedimentary Geology, Tulsa, Oklahoma, USA.

    Chapter  Google Scholar 

  • Vandenberghe, N., Van Simaeys, S., Steurbaut, E., Jagt, J., and Felder, P. (2004) Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Netherlands Journal of Geosciences-Geologie en Mijnbouw, 83, 155–171.

    Article  Google Scholar 

  • Velde, B. (1985) Clay Minerals. Developments in Sedimentology, 40. Elsevier, Amsterdam, 427 pp.

    Google Scholar 

  • Velde, B. and Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Springer Verlag, Berlin, 406 pp.

    Book  Google Scholar 

  • Weaver, C.E. and Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, 15, Elsevier Scientific Publishing Company, Amsterdam, London, New York, 213 pp.

    Google Scholar 

  • Wignall, P.B. and Newton, R.J. (2001) Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sedimentary Geology, 144, 335–356.

    Article  Google Scholar 

  • Wilson, A.D. (1955) A new method for the determination of ferrous iron in rocks and minerals. Bulletin of the Geological Survey of Great Britain, 9, 56–58.

    Google Scholar 

  • Zeelmaekers, E. (2011) Computerized qualitative and quantitative clay mineralogy: Introduction and application to known geological cases. Doctoral dissertation, University of Leuven, Leuven, Belgium, 397 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Adriaens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adriaens, R., Vandenberghe, N. & Elsen, J. Natural Clay-Sized Glauconite in the Neogene Deposits of the Campine Basin (Belgium). Clays Clay Miner. 62, 35–52 (2014). https://doi.org/10.1346/CCMN.2014.0620104

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2014.0620104

Key Words

Navigation