Skip to main content
Log in

Spiral Structure of 7 Å Halloysite: Mathematical Models

  • Published:
Clays and Clay Minerals

Abstract

Halloysite is used for targeted delivery of drugs and other biomolecules. Renewed interest in examination by X-ray diffraction (XRD) to predict the size of particles that can be loaded onto the nanotubes has resulted. Anhydrous halloysite consists of spiraled tubules the length and diameter of which can be determined by measurement using an electron microscope. In spite of ample evidence regarding the spiral structure of halloysite, current programs to evaluate the structure of halloysite nanotubes consider it to be a hollow tube or a cylinder which prevents accurate prediction of its structure and leads to misinformation about the sizes of materials that can be loaded onto the nanotubes. The overall objective of the current study was to derive equations to estimate the structure of halloysite nanotubes which take into consideration its spiral structure. The study of Fourier transform either by electron diffraction or XRD led to the measurement of the spiral thickness and the nature of the spiral. Calculations of the nanotube dimensions may determine the ability of these carriers to allow the mechanical delivery of certain drugs. Here the structure of hydrated halloysite (hollow cylindrical tubes with a doughnut-like cross-section) and anhydrous halloysite (spiraled or helical structure) are described as previously reported in the literature. The Fourier transform of the spiraled structure was selected based on three different kinds of spirals: the Archimedean spiral, the Power spiral, and the Logarithmic spiral. Programs used to define the crystal structure of materials and to calculate the Fourier transform need to take the spiral structure into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullayev, E. and Lvov, Y. (2010) Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers. Journal of Materials Chemistry, 20, 6681–6687.

    Article  Google Scholar 

  • Abdullayev, E., Price, R., Shchukin, D., and Lvov, Y. (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Applied Materials and Interfaces, 1, 1437–1443.

    Article  Google Scholar 

  • Abdullayev, E., Joshi, A., Wei, W., Zhao, Y., and Lvov, Y. (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 6, 7216–7226.

    Article  Google Scholar 

  • Bobos, I.I., Duplay, J., Rocha, J., and Gomes, C.S.F. (2001) Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596–607.

    Article  Google Scholar 

  • Brindley, G.W. and Robinson, K. (1948) X-ray studies of halloysite and metahalloysite. Part I. The structure of metahalloysite, an example of a random layer lattice. Mineralogical Magazine, 28, 393–406.

    Article  Google Scholar 

  • Brondani, D., Scheeren, C.W., Dupont, J., and Vieira, I.C. (2012) Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor. Analyst, 137, 3732–3739.

    Article  Google Scholar 

  • Bursill, L.A. (1990) Quasicrystallography on the spiral of archimedes. International Journal of Modern Physics B, 4, 2197–2216.

    Article  Google Scholar 

  • Cowley, J. (1961) Diffraction intensities from bent crystals. Acta Crystallographica, 14, 920–927.

    Article  Google Scholar 

  • Ece, O.I. and Schroeder, P.A. (2007) Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 18–35.

    Article  Google Scholar 

  • Ferris, T.L.J., Nafalski, A., and Saghafifar, M. (2001) Matching observed spiral form curves to equations of spirals in 2-d images. Pp. 151–158 in: Applied Electromagnetics and Computational Technology 11 (H. Tsuboi, and I. Sebestyen, editors). IOS Press, Amsterdam.

    Google Scholar 

  • Ghebaur, A., Garea, S.A., and Iovu, H. (2012) New polymer-halloysite hybrid materials - a potential controlled drug release system. International Journal of Pharmacy, 436, 568–573.

    Article  Google Scholar 

  • Honzo, G. and Mihama, K. (1954) A study of clay minerals by electron-diffraction diagrams due to individual crystallites. Acta Crystallographica, 7, 511–513.

    Article  Google Scholar 

  • Hope, E.W. and Kittrick, J.A. (1964) Surface tension and the morphology of halloysite. American Mineralogist, 49, 859–866.

    Google Scholar 

  • Hughes, A.D. and King, M.R. (2010) Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir, 26, 12155–12164.

    Article  Google Scholar 

  • Jagodzinski, H. and Kunze, G. (1954a) Die Rollchenstruktur des Chrysotils. I. Allgemeine Beugungtheorie und Kleinwinkelstreung. Neues Jahrbuch für Mineralogie Monatshefte, 95–108.

    Google Scholar 

  • Jagodzinski, H. and Kunze, G. (1954b) Die Rollchenstruktur des Chrysotils 111. Versetzungswachstum der Rollchen. Neues Jahrbuch für Mineralogie Monatshefte, 137–150.

    Google Scholar 

  • Jagodzinski, H. and Kunze, G. (1954c) Die Rollchenstruktur des Chrysotils. II. Weitwinkleninteferenzen. Neues Jahrbuch für Mineralogie Monatshefte, 113–130.

    Google Scholar 

  • Joo, Y., Jeon, Y., Lee, S.U., Sim, J.H., Ryu, J., Lee, S., Lee, H., and Sohn, D. (2012) Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). The Journal of Physical Chemistry C, 116, 18230–18235.

    Article  Google Scholar 

  • Kirkman, J.H. (1977) Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras. Clay Minerals, 12, 199–216.

    Article  Google Scholar 

  • Kirkman, J.H. (1981) Morphology and structure of halloysite in New Zealand tephras. Clays and Clay Minerals, 29, 1–9.

    Article  Google Scholar 

  • Kohyama, N., Fukushima, K., and Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays and Clay Minerals, 26, 25–40.

    Article  Google Scholar 

  • sLa Iglesia, A. and Galán, E. (1975) Halloysite-kaolinite transformation at room temperature. Clays and Clay Minerals, 23, 109–113.

    Article  Google Scholar 

  • Levis, S.R. and Deasy, P.B. (2002) Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmacy, 243, 125–134.

    Article  Google Scholar 

  • Levis, S.R. and Deasy, P.B. (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. International Journal of Pharmacy, 253, 145–157.

    Article  Google Scholar 

  • Lvov, Y.M., Shchukin, D.G., Mohwald, H, and Price, R.R. (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2, 814–820.

    Article  Google Scholar 

  • Mitra, G.B. (1957) X-ray diffraction study of the heat treatment of kaolinite. Indian Journal of Physics, 31, 324–328.

    Google Scholar 

  • Mitra, G.B. (1963) Structure defects in kaolinite. Zeitschrift für Kristallographie, 119, 161–175.

    Article  Google Scholar 

  • Mitra, G.B. (2012) Fourier transform of tubular objects with spiral structures. Journal of Crystallization Process and Technology, 2, 133–138.

    Article  Google Scholar 

  • Mitra, G.B. and Bhattacherjee, S. (1975) The structure of halloysite. Acta Crystallographica Section B, 31, 2851–2857.

    Article  Google Scholar 

  • Oliveira, M.T.G.d., Furtado, S.M.A., Formoso, M.L.L., Eggleton, R.A., and Dani, N. (2007) Coexistence of halloysite and kaolinite: A study on the genesis of kaolin clays of Campo Alegre basin, Santa Catarina State, Brazil. Anais da Academia Brasileira de Ciências, 79, 665–681.

    Article  Google Scholar 

  • Pierce, B.O. and Foster, R.M. (1966) A Short Table of Integrals, 4th edition. Blaisdell Publishing Co, a Division of Ginn & Co, New York, 96 pp.

    Google Scholar 

  • Qi, R., Cao, X., Shen, M., Guo, R., Yu, J., and Shi, X. (2012) Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. Journal of Biomaterials Science, Polymer Edition, 23, 299–313.

    Article  Google Scholar 

  • Qiao, J., Adams, J., and Johannsmann, D. (2012) Addition of halloysite nanotubes prevents cracking in drying latex films. Langmuir, 28, 8674–8680.

    Article  Google Scholar 

  • Robertson, I.D.M. and Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39, 113–126.

    Article  Google Scholar 

  • Shchukin, D.G., Sukhorukov, G.B., Price, R.R., and Lvov, Y.M. (2005) Halloysite nanotubes as biomimetic nanoreactors. Small, 1, 510–513.

    Article  Google Scholar 

  • Shi, Y.F., Tian, Z., Zhang, Y., Shen, H.B., and Jia, N.Q. (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6, 608.

    Article  Google Scholar 

  • Singh, B. (1996) Why does halloysite roll? - a new model. Clays and Clay Minerals, 44, 191–196.

    Article  Google Scholar 

  • Taggart, M.S., Jr., Milligan, W.O., and Studer, H.P. (1954) Electron micrographic studies of clays. Clays and Clay Minerals, 3, 31–95.

    Article  Google Scholar 

  • Tazaki, K. and Fyfe, W.S. (1987) Primitive clay precursors formed on feldspar. Canadian Journal of Earth Sciences, 24, 506–527.

    Article  Google Scholar 

  • Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R., and Leporatti, S. (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820–826.

    Article  Google Scholar 

  • Vergaro, V., Lvov, Y.M., and Leporatti, S. (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromolecular Bioscience, 12, 1265–1271.

    Article  Google Scholar 

  • Vigodsky, M. (1975) Mathematical Handbook - Higher Mathematics. Mir Publishers, Moscow.

    Google Scholar 

  • Viseras, M.T., Aguzzi, C., Cerezo, P., Cultrone, G., and Viseras, C. (2009) Supramolecular structure of 5-amino-salycilic acid/halloysite composites. Journal of Microencapsulation, 26, 279–286.

    Article  Google Scholar 

  • Warren, B.E. (1941) X-ray diffraction in random layer lattices. Physical Review, 59, 693–698.

    Article  Google Scholar 

  • Waser, J. (1955) Fourier transforms and scattering intensities of tubular objects. Acta Crystallographica, 8, 142–150.

    Article  Google Scholar 

  • Whittaker, E. (1955) A classification of cylindrical lattices. Acta Crystallographica, 8, 571–574.

    Article  Google Scholar 

  • Whittaker, E. (1956) The structure of chrysotile. II. Clinochrysotile. Acta Crystallographica, 9, 855–862.

    Article  Google Scholar 

  • Williamson, G.K. and Hall, W.H. (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31.

    Article  Google Scholar 

  • Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J., and Kepert, C.J. (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyl-triethoxysilane. Journal of Physical Chemistry C, 112, 15742–15751.

    Article  Google Scholar 

  • Yuan, P., Southon, P.D., Liu, Z., and Kepert, C.J. (2012a) Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology, 23, 375705–375709.

    Article  Google Scholar 

  • Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D., and He, H. (2012b) Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561–573.

    Article  Google Scholar 

  • Zhang, H, Lei, X., Yan, C., Wang, H., Xiao, G., Hao, J., Wang, D., and Qiu, X. (2012) Analysis of the crystal structure of 7 Å-halloysite. Advanced Materials Research, 415-417, 2206–2214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girija Bhushan Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, G.B. Spiral Structure of 7 Å Halloysite: Mathematical Models. Clays Clay Miner. 61, 499–507 (2013). https://doi.org/10.1346/CCMN.2013.0610602

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2013.0610602

Key Words

Navigation